
Chapter J

ORDINARY DIFFERENTIAL

EQUATIONS

In these next three chapters we shall elaborate on the study of the different

ial calculus of one variable and its application to geometry and classical

(Newtonian) physics. The motivating problem throughout is the central

problem of the subject of differential equations : to find a function on the

basis of given information on its derivatives. Observed phenomena in the

sciences seem always to involve rates of change. For example, it is observed

that the rate of acceleration of a falling body is a constant independent of

mass, height, or velocity; the progress of a chemical reaction slows down as

it proceeds, dependent on the quantities of the chemicals involved. These

observations, when made precise, appear as differential equations. In

order to predict (the time it takes for the body to fall a given height, the

amount of new chemicals produced before the reaction stops), the function

described by the differential equation must be found.

The first two sections of the present chapter are devoted to the description

of the basic concepts involved ; in the first we shall discuss the differentiation

of vector-valued functions, and the second is devoted to approximation and

Taylor's formula. We also include a brief excursion into the computation of

maxima and minima of functions of several variables subject to constraints

by the technique of Lagrange multipliers.

The main theoretical tool in this study is Picard's theorem which gives

conditions under which a differential equation has a solution and only one

solution. This theorem essentially tells us what a well-posed problem is,

and asserts that well-posed problems are always solvable. The question
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228 3 Ordinary Differential Equations

of actually producing a formula for the solution, or an algorithm for com

puting approximate values for the solution is another matter altogether.
Several techniques will be exposed in this chapter and Chapter 5 (successive

approximations, series expansions); there are many more very efficient

computational techniques which we shall not develop here.

It will become clear that the subject of ordinary differential equations has a

lot to do with the study of curves (paths of motion). Thus in the next

chapter we shall investigate the geometry of curves and its relation with the

subject of differential equations.

3.1 Differentiation

The first important step in the study of differential equations is to consider

vector-valued functions of a real variable as well as real-valued functions.

This is the appropriate setting for many problems involving differential

equations, and is particularly relevant when studying equations involving
derivatives of order greater than one. In the first sections we shall consider

differentiable vector-valued functions of a real variable and introduce a

special technique for approximating values: Taylor's expansion.

Definition 1. Let x0 e R, and suppose f is an Revalued function defined

in a neighborhood of x0 . f is differentiable at x0 if

,.
f(*o + 0 ~ f(*o)

lim

f-0 t

exists. The limit is called the derivative of f at x0 and is denoted by f'(x0).
If f is defined in an open set U, we say f is differentiable (written f is C1) in
U if [f(x + t) f(x)]/f converges for all x on U to a continuous function f

as t -+ 0.

That this definition is not so far from the derivative encountered in calculus

is demonstrated by the following assertion.

Proposition 1. Let f be an R"-valuedfunction defined in a neighborhood of

x0 e R. Write f = (fu ...,/) in coordinates, f is differentiable at x0 if and

only iffi,...,fH are differentiable at x0. Further, f'(x0) = (f[(x0), . . .

,

fn(Xo))-
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Proof.

f (Xp + Q
- f (Xo)

=

//l(Xo + Q-/1(Xo) /(x0 + Q-/(x0)\

/ I *
"'

t )

The limit on the left as t -* 0 exists if and only if all the limits on the right exist

(Proposition 10 in Chapter 2), and equality holds also in the limit. That is all that

Proposition 1 says.

Now if f is a differentiable function on an interval taking values in R", its

image is a curve in R". The derivative f'(x0) is a vector in R" and points in

the direction ofmotion of the curve (Figure 3.1). That is, the line through

f(x0) and parallel to f'(x0) is the limiting position of the line through f(x0)
and a nearby point f(x0 + t). For that line is parallel to t~ 1(f(x0 + t) f(x0)),
and by definition this vector has f'(*o) as limit as t - 0. This line through

f(x0) and parallel to f'(x0) is called the tangent line of the curve at f(x0).
From Proposition 1 it easily follows that iff, g are differentiable, so is f + g,

and (f + g)'(xo) = f'(x0) + g'(*o)- The chain rule also follows easily:

Proposition 2. (Chain Rule I) Let g be a real-valued function defined in a

neighborhood of x0 in R, and differentiable at x. Suppose f is an R"-valued

function which is differentiable at g(x0) (see Figure 3.2). Then fgis differ

entiable at x0 and (f g)'(x0) = g'(x0)f'(g(x0)). (We have written g'(x0)

before f'(g(x0)) as this is the customary way ofwriting the product of a scalar

and a vector.)

Figure 3.1
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i(g(x))

x
g(x)

Figure 3.2

This is of course true, just because it is true in each coordinate, by the

ordinary chain rule. Thus if f = (fu . . . ,/), then fg = (fig,---,fg),
so

(f <?)' = ((/i <?)',. --,(/s0')

= (j i0', ,/;0') = 0'f

Example

1. Let f(x) = (x, x2, x3), g(t) = sin t. Then (f g)(t) = (sin t, sin2f,
sin3 0

(f o g)' = cos t(l, 2 sin t, 3 sin2f)

Now, there is also a chain rule for taking a real-valued function of a

vector-valued function (Figure 3.3). Suppose now g is a continuously
differentiable function defined on an interval / taking values in a domain D

in R". Suppose / is a real-valued function defined on D which has all

partial derivatives continuous. Then/ g is a real-valued function on the

interval /.

For clarity of exposition, let us take the case n = 2. We can write g in

coordinates as g(x) = (g^(x), g2(x)). Then

/(g(*o + 0) -/(g(*o))

=f(ffi(x0 + t), g2(x0 + t)) -f(gi(x0), g2(x0))

=f(gi(x0 + 0. gi(xo + 0) -f(gi(x0), g2(x0 + 0)

+JXffi(x0), g2(x0 + t)) -f(gi,(x0), g2(x0)) (3.1)
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Now the function f(s, g2(x0 + 0) is differentiable (it is the restriction of /

to the line y
= g2(xo + 0)- By the mean value theorem, the first difference is

Pi f

-ir (i> 02(*o + 0)[ffi(*o + 0 ~

ff i(*o)]
dx

for some t,x between gt(x0 + t) and gt(xQ). Now applying the mean value

theorem we see that

0i(*o + O-0i(*o)=0iOi)'

for some nx between x0 + t and x0 . Thus the first difference in (3.1) is

^r(Si,02(*o + O)0'i("i)<
dx

9i(x0) < $i < 0i(*o + 0 x0 < nx < x0 + t

Similarly, the second difference is

df

dy
(0l(*o) >2)9l(*l2)t

g2(x0) < 2 < g2(x0 + 0 x0<n2<x0 + t

Figure 3.3

/(gU))
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Thus, we may rewrite (3.1) as

/(g(x0 + Q -

/(g(x0))

t

=

yx
i, 92(x0 + 0)ffi(li) + (9i(x0), kteaOh) (3.2)

Taking the limit as t -0, we have on the right ^ -*#i(x0) (since gt is con

tinuous), and g2(x0 + t), 2 both tend to g2(x0) since g2 is continuous. Also

!, w2 bth tend to x0 since they lie between x0 and x0 + t. Since all the

derivatives in (3.2) are continuous, the limit exists, so

^^ (xo) =
Y%

(g(*o))0i(*o) +
y

(g(*o)) 02'(xo) (3.3)

Notice that, using the directional derivative notation, (3.3) becomes

<*(/g)

dx
(x0) = df(g(x0), g'(x0)) = <V/(g(x0), g'(x0)> (3.4)

Thus the derivative of/along the curve x = g(x) is the same as its directional
derivative along the tangent direction to the curve (Figure 3.4). This is

true in not only R2, but for all R". The derivation is of course the same,

only with the notational complication of many more variables. Thus

Figure 3.4
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Proposition 3. (Chain Rule II) Let g be a continuously differentiable
function of a real variable, taking values in a domain D in Rn, and suppose f
is a continuously differentiable real-valued function defined on D. Thenfo g

is a differentiable function and

(f g)'(0 = df(g(t), g'(t))

Examples

2. Let g(t) = (sin t, cos t),f(x, y) = xy2. Then

df((x, y), (a,b))=d-fa + 8-fb = y2a + 2xyb
dx dy

g'(t) = (cos t, sin f)

(f g)'(0 = df(g(t), g'(0) = cos2 r cos t + 2 cos t sin t(-sin 0

= cos 2t cos t

We can, of course, verify this by direct substitution, since f g(t) =

sin t cos2 t .

3. Let g(r) = (t, t2, 2t),f(x, y, z) = xy + log z.

c

df((x, y, z), (a, b, c)) = ya + xb + -

z

g'(t) = (1, 2t, 2)

(f g)'(0 = df((t, t2, 2t), (1, 2t, 2)) = t2 + 2t2 + -

= 3t2 + -

t

4. Suppose/ g are given as in Proposition 3, and/ g has a maxi

mum at r0 . ThenV/(g(x0)) is orthogonal to g'(t0). For (/ g)'(t0) =

0,but

(/ g)'Oo) = df(g(t0), g'(fo)) = <V/(g(<o)). g'Oo)>
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Lagrange Multipliers

This last example serves to provide a method for finding maxima (or

minima) of functions subject to certain constraints. This is the process of

Lagrange multipliers. Suppose/, # are differentiable functions in a certain

domain D in jR". We consider/as the function we are studying and g(x) = 0

the constraint. Suppose / has a maximum on g(x) = 0 at x0 . Thus, if T

is a curve in the set {g(x) = 0} going through x0 ,
then V/(x0) is orthogonal

to the tangent line to T at x0 . For if T is the image of a function <b of a real

variable, and (b(t0) = x0 , then as in Example 4, <V/(x0), 0'(ro)> = 0, and

(p'(t0) spans the tangent line to T at x0 . Now also g <b is constant, so

<V#(x0), <t>'(t0)y = 0. Thus at the maximum point xQ of/ on {g(x) = 0},

V/(x0) and Vg(x0) are both orthogonal to all curves through x0 subject to

the constraint g(x) = 0. If there are enough such curves, say, so that the

set of tangent vectors fills out a subspace of R" of dimension n 1
,
then

V/(x0) and V#(x0) must be collinear. We will not worry here that there are

enough of these curves, but take it for granted. After all, we are not here

studying the theory, but only seeking a technique which will provide candi

dates for a maximum point. We can state this principle : if x0 is a maximum

(or minimum) point for /subject to the constraint g(x) = 0, then there is a A

such that

V/(x0) = Mx0)

Thus we can find possible x0 by solving the system of equations

V/(x) = Xg(x)

g(x) = 0 (3.5)

for x, X.

Examples

5. We shall find the maximum value of xyz on the unit sphere
x2 + y2 + z2 = 1. Let/(x) = xyz, g(x) = x2 + y2 + z2 - 1.

V/(x) = (yz, xz, xy) Vg(x) = (2x, 2y, 2z)

Thus we must solve

x2 + y2 + z2 = 1

(yz, xz, xy) = 2X(x, y,z)
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Eliminating X from Equations (3.6), we obtain

yz xz xy

xyz

This can be written as

(3.7)

z = 0 or x = 0 or y
= 0 or

-

=
-,-

= -

(3.8)
x y y z

Thus either one of the coordinates is zero or x2 = y2 = z2 Near

any point where one of the coordinates is zero, / changes sign, so

these points are disqualified. This leaves any one of the points

l/>/3(+l +1, +!) The value of /at any one of these points is

+ 3_3/2, thus 3_3/2 is the maximum.

6. Find the point on the curve 2(x l)2 + 3y2 = 4 which is closest

totheorigin. Here#(x,y) = 2(x - l)2 + j2
- 4 and/(x, y) =x2 + y2.

Thus

V/= (2x, 2y) Vg = (4(x - 1), 2y)

The equations become

x = 2X(x 1)

y
= Xy

2(x - l)2 + y2 = 4

From the second equation, either y = 0 or X = 1. The second case

gives x =2. Thus, the candidates are (1 V^O), (2, + ^2). The

values off at the first pair is (1
- Ji)2, (1 + V2)2 '> and at the s_econd

the value of / is 6. Clearly, the minimum distance is |1
-

v 2| and

the maximum is 6 (see Figure 3.5).

7. Find the curve on the intersection of the two surfaces

xyz
= 1

x2 + y2 + 2z2 = 8
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Figure 3.5

which is closest to the origin. In this problem we have two constraints,

but we can see through the technique. The tangent vector to the

curve is orthogonal to the gradient of both constraining functions, and

at the maximum point V(x2 + y2 + z2) is orthogonal to the curve.

Thus this gradient must be coplanar with the gradients of the

constraining functions. Let f(x) = x2 + y2 + z2, g(x) = xyz 1,

h(x) = x2 + y2 + 2z2 - 8. Then V/=2(x, y, z), Vg = (yz, xz, xy),
Vn = 2(x, y, 2z). Wemust solve these five equations for x, y, z,X,\i:

2(x, y, z) = X(yz, xz, xy) + zfi(x, y, 2z)

xyz
= 1

x2 + y2 + 2z2 = 8

8. Let M = (a/) be a symmetric n x n matrix. That is, af = a?
for all i and/ If T is the transformation on R" defined byM,

V7/x, x = 27x

We show this by computation:

<Tx, x> = 2 fly'xV (3.9)
". j

The kth component of VTx,x is found by differentiating (3.9)
with respect to x\ this gives

Ifl*'x' + Zfl7v
* j
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But since M is symmetric, this is the same as 2; Ok'x' + y ak}x> =

2(Tx)k. Then Vrx,x = 2Tx is established. Now, the 'function
/OO = (Tx, x> must attain a maximum on the unit sphere, say at x.
The Lagrange multiplier procedure tells us that there is a X such that

Vrx,x|x=Xo = V(2xi2-l)|x=Xo or 2Tx = 2Xx

Thus the transformation T has an eigenvector, namely that x0 on the

unit sphere which maximizes the function (Tx, x>.

We can continue this idea in order to prove that a transformation given by
a symmetric transformation has an orthogonal basis of eigenvectors. For,
let x1 be the eigenvector found as in Example 8. Now maximize (Tx, x>

subject to the constraints <x, x> = 1
, <x, xx > = 0. If x2 is the maximum

point subject to these constraints, we have X2, \i2 such that

||x2 1| = 1, <x, Xl> = 0, 2Tx2 = 2X2x2 , 2Tx2 = /i2Vx, xx

Thus, by the first two equations, x2 is nonzero and orthogonal to xl5 and

by the third, x2 is an eigenvector of T. Now proceed to the constraints

<x, x> = 1, <x, x^ = 0, <x, x2> = 0. The same technique works to produce
a third eigenvector. We can go on until we have found n independent

eigenvectors.

Examples

9. Let

and find the eigenvectors of M.

X is an eigenvector ofM if and only if there is a nonzero vector x

such that (M - XI)x = 0. We know the necessary and sufficient

condition for that: det(M
- AI) = 0. Thus the eigenvalues of M are

the roots of det(M
- XT) = 0. Now
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After a computation we find that

det(M - AI) = (2
- A)3 - 3(2

- A) + 2 = -(A
- 1)2(A - 4)

Thus the eigenvalues are 1,4. We find the corresponding eigenvectors

by solving the equations (M - I)x = 0, (M
- 4I)x = 0 for nonzero

vectors.

eigenvalue 1 :

/I 1 1\

M-I= 1 1 1

\l 1 1/

corresponding eigenvectors: (1, -1, 0), (0, -1, 1)

(Any two independent vectors such that vx + v2 + v3
= 0 will do.)

eigenvalue 4:

1-2 1 1\

M-4I= 1 -2 1

\ 1 1-2/

The sum of the three rows is zero, so they are dependent. The first

and second are independent, so the corresponding eigenvector lies

on the line

-2x+ y + z = 0

x 2y + z = 0

Such a vector is (1, 1, 1). Thus the eigenvectors of M are (1, - 1, 0),

(0, 1, 1) with eigenvalue 1, and (1, 1, 1) with eigenvalue 4.

10. Find the eigenvalues of

Here det(M
-

AI) = (2
- A)2 - 9 which has the roots -1,5,

(3 3\
eigenvalue 1 : M + I = I

, _| kills the vector (1, 1).

1-3 3\
eigenvalue 5 : M 51 = I

,
.1 kills the vector (1, 1).
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EXERCISES

1. Differentiate these functions and graph the curve defined by the
function

(a) f(t) = e", c a complex number.

(b) f (f ) = (cos f, sin f, f ).

(c) f (t) = (a cos t, b sin t).

(d) t(t) = (t2,t3).

(e) t(t)=(t,t2,t3).

(f) f(f)=(sinf,cosf,0).
2. What is the length of t'(t) in each of Exercises l(a)-(f) ? What is the

angle between f '(f) and f "(f)?
3. At which pairs of points are the tangent lines to the curves (a) (c = i),

and (c) of Exercise 1 parallel?
4. At which pairs of points are the tangent lines to Exercises 1(b), (f)

parallel?

5. Find the maximum of xy on the ellipse ax2 + by2 = 1.

6. Find the minimum of x + y on the curve xy = 1 in the first quadrant.
7. Find the two points on the curves y

= x2 and xy
= 1 which are

closest.

8. Minimize x2 + y2 + z2 on the ellipsoid ax2 + by2 + cz2 = 1.

9. Given two straight lines L1 and L2 in space how would you try to find

the points PieZ,1, p2eL2 which are closest (i.e., minimize I'p q|| for

peL\qeL2)?
10. Find the eigenvalues and eigenvectors of these matrices:

(a)

(b)

(I !) *> ("i ?)

1 1 . Find the eigenvalues and eigenvectors of these matrices :

1 0 -1\ /2 1 3\

(a) 0 1 0 . (b) 1 0 3

\-l 0 3/ \3 3

PROBLEMS

1. Let f, g be differentiable /{"-valued functions defined on an interval I.

(a) Show that the inner product h = <f, g> is differentiable and

h' = <f ', g> + <f, g'>.

(b) Show that ||f || = <f, f>1/2 is constant if and only if f (x), V(x) are

orthogonal for all x.

(c) Give a condition for f to lie on a straight line.

2. Find the point on the intersection of these two surfaces

a2x2 + b2y2 + c2z2 = 1

x2+y2 = \

which is closest to the origin.
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3. A rectangular box of maximum volume is to be constructed, with sides

parallel to the coordinate planes, one vertex at the origin and the diagonally

opposite vertex on the plane ax + by + cz = 1 . Find the volume of that

box.

4. A community consumes water at the rate of sin2(27rf/24) gallons per

hour. They wish to build a storage tank of capacity Q with a pump of rate

w gallons per hour, so that the community will never run out ofwater. The

cost is Q + kw. Minimize this cost for them.

5. Show that if /is any differentiable function on R3, there are at least

two points x on the unit sphere at which V/(x) is parallel to x.

3.2 Taylor's Formula

Higher order derivatives appear for vector-valued functions just as they
do in the usual one-variable calculus.

Definition 2. Let f be an .Revalued function defined on an open set

UcJJ. f is A:-times differentiable on U if there exist differentiable function

gl5 . . .

, gk defined on U such that gt
= f, g2

= g't ,
. . .

, gk
= g'k-! We will

denote gk by fm. f is Ac-times continuously differentiable on U (written
f e Ck(U)) if f(t) is continuous on U.

The following proposition is an obvious extension of Proposition 1 by
induction.

Proposition 4. Let f= (ft, ...,/,) be an R"-valued function defined on U.

f is k-times (continuously) differentiable on U iffu ,/ are each k-times

(continuously) differentiable on U. Further, fm = (f^k), . . . ,f(k)).

Knowing that a given function is differentiable at a particular point can

be a great aid in computing approximations to its values at nearby points.
These considerations in turn lead to a better understanding of the notion of

differentiability. Suppose that/is a differentiable i?"-valued function defined

in a neighborhood of 0. By definition the difference quotient,

-[/(0-/(0)]
t

converges to f'(0). In other words, the function e(f) defined for t # 0 by

<t) = -

U(t)
-

/(0)]
-

/'(0)
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has limit 0 as t -> 0. Rewriting this,

fit) =/(0) +f'(0)t + 8(0 t (3.10)

where lim e(t) = 0. Thus a good approximation to the value f(t) would be

<->o

/(0) + /'(0)' ; how good depends of course on the function e(t). But since

the difference between this approximation and f(t) is e(t) t, it suffices to

know just the maximum of |e(f)|. We give an illustration of how to go

about determining this.

Suppose /is a C2 function defined in an interval \_-R, R]. Let

M = sup{|/"(x)|:|x|<K}

Then

1/(0
- 0/(0) +/'(0)0l < MR\t\ for t e [-*, K] (3.11)

This follows easily from the mean value theorem. There is a between

t and 0 such that

Further, there is an n between , and 0 such that /'OS) -f'(0) =/"(") Thus,

for a given * e [-R, R],

(0 = ^C(/(0-/(0))]-/'(0)
= f'(0

- /'(0) = /"() r,,Zer_-R,K]

Thus |(f)| < MR. Inequality (3.1 1) follows from (3.10) and this inequality.

Now, although it could be very difficult to adequately describe the function

e(0, the maximum M is much easier to obtain. In practice, /" is monotonic

near 0 so we need only look at its values at the end points -R and R to

obtain this estimate. We shall now generalize this argument in order to

obtain estimates which are even more accurate.

Rereading Equation (3.10) and the special illustration above we can assert

that differentiability of a function at a point shows us how the values of the

function at nearby points can be well approximated by the values of a first-

order polynomial. (Well approximated here means that the error is sma

relative to the distance between the two points.) Furthermore, this well

approximability is a criterion for differentiability.
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Proposition 5. Suppose thatfis an R"-valuedfunction defined in a neighbor

hood of x0eR. f is differentiable at x0 if and only if there exists a linear

function L: R^R" and a function e defined for small t such that lim s(t) = 0
(-.0

and

f(xQ + t)=f(x0) + L(t) + e(t)t

Furthermore, L(t) =f'(x0) t.

Proof. We have seen above that differentiability implies this condition. Con

versely, suppose this condition is verified. Then

r
/(* + ') -/(*>

,-
L0)

, ,. ,
. .. L(t)

hm = lim h lim e(t ) = hm = L(\)
I-.0 f t-*o f r-.o t-o f

for since L is linear, L(t ) = fL(l). Thus /is differentiable at x0 ,
and /'(x0) = L(\).

Now, an approximate evaluation of /(f) for t near 0 with error that is

small relative to |r| may not be as good as required. A better approximation
would be one whose error is small as compared to t2, or even better \t\k
for sufficiently large k. This is where the higher order derivatives come in.

We shall now derive a theorem which gives such approximations. The

derivation follows by induction directly from the above remarks.

Theorem 3.1. (Taylor's Theorem) Suppose that f is a (k + l)-times con

tinuously differentiable Revalued function defined in an interval I about x0 .

Then there is a polynomialP (with coefficients in R") ofdegree k, and afunction
s definedfor t in I such that

(i) e(t) is bounded by max{|/(lt+1)(x) | : x between x0 andx0 + r},

E(i)tk+1

(ii) /(x0 + 0 = F(0 +A^ (3-12)

Furthermore, P is unique and is given by

P(t) = /(x0) + /'(*o)' +^ t2 + +i^ tk

If we write x = x0 + t, (3.12) becomes a more familiar expression, called

Taylor's expansion of degree k about x0 :

fix) = I rr2 (x - x0y + b(x - x0)(x
- xoy+1 (3.13)

>=o i-
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Proof. The proof is by induction on k. The case k = 1 was already discussed

above. We now assume the proposition for k = n 1 and prove it for k = n, by

applying the induction hypothesis to /'. For simplicity we take x0
= 0, and

I = {x: \x\<a}.

Let tel. By the induction hypothesis we can write

since/'(0=/(,
+ 1> Here e0(t) is bounded byM

= max{|/(*+n(x)| : x between 0 and

t}. Now let us integrate (3.14) from 0 to x:

<*
"-1 /""+1>(0) r 1 f* /-, kn

/'(f) rfr = I T1 *' dt + -, I *o(0"* (3-15)

The integral on the left is, by the fundamental theorem of calculus, /(x)-/(0).

Thus, letting

n+ 1 C*

ix) = -^r e0(t)t"dt
x Jo

we obtain from (3.15)

n+l

m =/(o) + 2 J 771
+

^T ^TT
eW

which is just the same as (3.12). We must show that e(x) is bounded by M. But,

"W'-SH* ^(Ol^f<^M{;r.f<M

since e0 is bounded by M.

Examples

11. Find the Taylor expansion of degree 3 about 1 of f(t) =

1 + t + 3t4.

/(I) = 5 /'(l)=l + 12'3|,= i
= 13

/"(1) = 36 f"(l) = 72 and /(4)(0 = 72

thus the Taylor expansion is

, (0 4

f(t) = 5 + 13(t
- D + 180

- D2 + 120
" D +

"24
'
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where |e(t)| < 72.

Notice that, since /(5)(0 = > the Taylor expansion of degree 4 is

accurate :

f(t) = 5 + 13 - 1) + 18(1
- l)2 + 12(f

- I)3 + 30
- I)4

for all t.

12. Find the Taylor expansion of degree 4 about 0 of /(f) =

(1 + t2)-1

/(0) = 1

/'(f)=-2f(l + f2)-l /'(0) = 0

f"(t) = -2(1 + f2)"1 + 4f2(l + r2)"1 /"(0) = -2

f'"(t) = 4*1 + t2)'2 +St(l + t2)-1 - 8f3(l + f2)~
2

/'"(0) = 0

/W(f) = 4(1 + *T2 + 8(1 + t2)-1 + t[_- ] = 12

f{t) = 1 - t2 + f + e(t)t5

13. Calculate (40)1/2 to three decimal places. We expand

f(x) = y/x about 36.

f'(x) = \x-112 f"(x) = \x-3>2

f'"(x) = \x-^2 /W(x) = ^x-7'2

/(36) = 6 /'(36) =
1 f"^ =^

/'"(36) =^ l/WWI^

for x between 36 and 40. Thus

f(x) = 6 + 1 (x
- 36) +^ (x

- 36)2

+ -L (X - 36)3 + \e(x - 36)4(x - 36)4
8.6 6
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where e(0 < 15/16.67. Thus

(40)i/2-H+8 <iJ743<L^10-~

6 16.67 67

and the desired approximation is 6.334.

14. Calculate e4 to three decimal places. We first write down the

Taylor expansion f(x) = ex about 0. Since f'(x) =/(x), we have

/<k>(x) = ex for all x. Thus the Taylor expansion of ex, degree n is

" x' xn+1 /-, <c\

'-S^^oTTiii
(316)

where |e(x)| < max{| e'\ : 0<t<x}. Thus to estimate e* we now

take |e(x)| < e4 < 34. The approximation by the Taylor expansion

of degree n is bounded by

00.xn+1^344-
(n+1)! _(n + l)!

We must choose n so large that this is bounded by 10"
3

n > 41 will

do, as we see by the following succession of inequalities

3*4"+
1 4*+

5 22n+1 1

(7+7)!
~

zr^
~

2~3^ri
~

ir3"1

1
<̂

irj3/10(n-31)

Thus we must have (3/10)(n
- 31) < 3, or n > 41.

In the Taylor expansion (3.16) of ex observe that the remainder term is

dominated by

x"+1
e"

(n + 1)!

and therefore tends to zero as - a.. Thus, if we let n
- oo in (3.16), we
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obtain (once again)

i = 0 I-

Now, this kind of an argument can be applied to any function which we

happen to know has derivatives of all orders. That is, if / is infinitely

differentiable in an interval /about x0 we can write the Taylor expansion

fix) = /(x0) + E (x - x0) + e(x)
(w + 1), (317)

where |e(x)| < max{|/("+1)(f) | : t between x0 and x} valid for every n. Let

M"
+

1(x) be thus bound. If

limM"
+ 1(x)(*,~Xi"+1=0 (3.18)

in + 1)

then clearly we can take the limit as n -+ oo in (3.17) and represent /as a

series. This series is called the Taylor Expansion of/aboutx0. In Chapters

5 and 6 we shall return to the consideration of series expansions for functions.

In Section 5.8 we shall construct infinitely differentiable functions which are

not represented by these Taylor expansions. For the present we mean only

to remark on these approximations of the Taylor expansion as a tool for

approximation.

Examples

15. Consider now/(x) = sin x. We have

f'(x) = cos x /"OO = sin x /'"OO = cos x

/(4)(x) =sin x, . . .

and the cycle repeats itself. Thus

/<4"+1>(x) = cos x /(4n
+

2)(x) = sin x /(4"+3)(x) = -cos x

/<4"
+

4>(x) = sin x

The Taylor expansion about zero is thus found to be

T ^ 7
X X X

f(x) = x +
- + + Remainder term
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Since all derivatives of sin x are one of +sinx, +cosx, they are

bounded by 1, so the remainder for the Taylor expansion of degree k

is bounded by

1

(k + iy.

which tends to zero as k ->oo. Thus the Taylor expansion

\kfk+ 1
x3 x5 x7 (-1/2*

sinx = x
__

+
___ + ..+___ +

...

accurately expresses sine as an infinite sum. Similarly, we can

compute a Taylor expansion for the cosine (see Exercise 15),

x2 x4 x6 (-l)kx2k

COSX=2!-4!
+

6!
+

'"+l2l0r
+
'"

16. Find sin n/4 to an accuracy of 10"3. We need to compute

a bound on the remainder after calculating n terms of the Taylor

expansion and then ensure this bound is < 10" 3. Now the remainder

after k terms is bounded by [_(2k + 1 ) !]
"

\nj4)2k +1. We shall use the

fact that n/4 < 4/5 to verify that k = 3 will work:

I^7<d/4<_L<10-3
7!\4/ _6.4457_6.54

Thus an estimate to sin n/4 to within one thousandth is

n n3
+

4 6.64 120.45

17. The logarithm is infinitely differentiable around the point 1.

Does it have an infinite Taylor expansion there ? By computation, we

find

log(')(x) = x"1 log'(D = l

log<">(x) = -x"2 log(")(D=-1

log('")(x) = 2x"3 log('")(l) = 2

log<4>(x) =
- 13.2x"4 log(4)(l) = (- 1)3 2

log()(x) = (-l)"(n-l)!x-" log(n)(l) = (-!)"(-!)! (3-19)
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The Taylor expansion of degree n about 1 is thus

^'-S^^^fr-tf +^OT (3.20,

Notice that from the first equation of (3.19), if x < 1,

|e(x)|<(n)!x"<"
+ 1)

and thus the remainder of (3.20) is bounded by

1 / x- 1 \n+1

n+ 1\ x J

which tends to zero as n -> oo, so long as 1 > x > 1/2. Similarly,

we can show (Exercise 18) that the remainder goes to zero if

1 < x < 3/2. Thus, in the interval 1/2 < x < 3/2, the logarithm has

the Taylor series

00 (x l)k

log(x) = I(-l)^-X
i=l K

EXERCISES

12. Find the Taylor expansion about the origin of degree 5 of tan x; of

(l+*)-\

13. Find sin \ accurately to 4 decimal places.

14. Find V3 accurately to 4 decimal places.

15. Derive the Taylor expansion (given after Example 15) of cos x.

1 6. Find an interval about the origin in which the substitution

(1 + x)-1 = l-x

is accurate to three decimal places. What about the substitution

(l+x)-1 = l-x + x1?
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17. Find an interval about the origin in which the substitution

x2 x3
e* = l + x +

T
+

-

is accurate to three decimal places.
18. Show that the series

(x
- 1)<

1=1 k

represents the logarithm in the interval l/2<x<3/2. Observe that the

series converges for all x in the interval (0, 2). Does it converge there to

logx?

PROBLEMS

6. Suppose/is a A>times differentiable real-valued function defined on the

interval /. Suppose /<k) = 0 for all k. Show that / is a polynomial of

degree at most k 1 .

7. Suppose that/ g are C functions defined on an interval containing 0,

and /(0) = ---=/"-1)(0)=0, g(0) = =g-1)(0) =0, but gm(0)^0.

Prove that

/0)_/""(0)
9(t) 9m(0)

8. (Taylor's form of the mean value theorem) Suppose that /is C on

the interval [R, R]. Show that for t e [R, R], there is a between 0 and f

such that

1 = 0 11 K\

9. Let m be any integer and define the functions f0 ,
. . .

, fm-i by

fix) = I
X
nm + I

n= o (mn + i) !

(a) e*=fi(x)+---+fm(x). (

(b) //=/i-i for ; = l,...,/w-l.

(c) /o =/m-l-

(d) The functions /i, ...,/ are all solutions of the differential

equation

y(m) _ y
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10. (a) Suppose that /is continuous on the interval [R, R]. Define

0(0= f f(tx)dx te[-R,R]
>0

and show that g is also continuous.

(b) Suppose that h is C1 on [-R, R]. Prove that there is a con

tinuous function k such that h(t ) = h(0) + tk(t ). (Hint: Consider

jo '(T) dr and make the substitution t = tx.)

3.3 Differential Equations

Now, an ordinary differential equation is (roughly speaking) an equation

involving the variable x, an "unknown" function/ and some of its deriva

tives/',/", .. .,fk\ Thus

fix) = k(x)

f"+f=0

f'(x) = x/(x)

C/(4)(x)]2 + e*''w = |/(3)(x)| + log|x + 1|

are examples of differential equations. A solution is a function which makes

the equation true. For example, |5 k, sin x, exp(^x2) solve the first three

equations respectively (as for the fourth, we cannot easily exhibit a solution).
We prefer to think about differential equations in this vague sense rather

than to try to attempt a formal definition of such, so we shall do so.

Many equations do not admit solutions and some equations admit many.
Consider these :

|/| + |y-x| = 0

(y'f + i = o

y" + y
= 0

The first has no solution y =f(x), because we cannot have both/(x) = x

and /'(x) = 0; the second has no solution because the derivative of the

supposed solution would be imaginary. The third equation has as solutions

sin x, cos x, as well as any linear combination of these. The first equation
must be discarded as being self-contradictory; the second admits solutions

if we permit ourselves to consider complex-valued functions. As we shall
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see this turns out to be a very fruitful course, for it permits understanding
the third as well.

The importance of calculus derives from the fact that it is necessary to the

solution of concrete problems (mainly derived from the study of physics and
the natural sciences). These problems usually are stated mathematically
as differential equations.

Examples

18. Compound interest. A bank likes to pay its depositors on the

basis of the amount deposited and the length of time they have been

able to use these deposits. Thus every (say) June 30 your bank

would add to your deposit an amount equal to (say) 5% of that part
of your deposit which they have held for the past year (and if they are

decent about it a reasonable fraction of that 5 % for parts left in for

fractions of that year). Many years ago, that great financial wizard,

L. Waverly Oakes, pointed out that that amount that he kept in his

bank for the first half-year was working for the bank and he should

be paid for it. Furthermore, argued Mr. Oakes, the payment he

should have received was also sunk back into the bank's investments

so also was earning income for the bank, and thus for its depositors.

Finally, Mr. Oakes pointed out that there is nothing special in half a

year, or any particular fraction thereof. His very words were
"

Over

any period of time, no matter how small, the earning of a particular

balance relative to that balance should be directly proportional to

that period of time. In order to best approach the interest due its

depositors, our banks should be computing interest as often as

possible." The banks all responded to this profound utterance by

recomputing their interest every month instead of every year. Some

body even suggested that, with an army of secretaries, they could so

compute the accrued interest every 30 seconds. And there the matter

would have rested were it not for an obscure student of Isaac Newton

who dabbled in the stock market.

Suppose at time t0 a sum of s0 pounds are deposited in the bank.

Let f(t) for all times t > t0 be the balance accruing from this deposit

according to the Oakes system. Then, Oakes' assertion is, for all

t-y ^ f 1 ^ tn ,

fih)
-

/Pi)

fih)

= k(t2
- h) (3-2D

where k is the earning power (interest rate) of money. The first
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thing this brilliant person remarked is that (3.21) cannot possibly

always hold. Let us illustrate his discussion.

Suppose that 500 pounds are deposited in the bank at a 5% per

annum interest rate. Then /(0) = 500 and at the end of one year,

the interest is 25 pounds, so/(l) = 525. Now, if interest is computed

every half-year, we obtain, by (3.21),

^-^ 0.05ft)
500

K2>

or/(l/2) = 512.50. Then, over the second half of the year, we obtain

/(l)
- 512.50

512.50

= 0.05ft)

so that by this computation /(l) = 525.31. As this is closer to the

actual earnings of the initial deposit, this is more like the amount the

depositor should get. Furthermore, this semiannual computation

has neglected the earnings during the last three-quarters of the 6.25

accrued during the first quarter. In fact, when we compute the

interest quarterly we find that the value of/(l) should be no less than

525.504. And so it goes: no matter what period we choose for the

computation of interest, we will be neglecting the interest accrued

by the growing total during that interest. Thus Oakes' formulation

cannot be correct. However, our student was moved by the basic

justice ofOakes' ideas and after rewriting Oakes' formula as

f(t2) ~ fih)
.,v

: :
= fc/Oi)

h
_

h

he asserted that he had found the precise statement of the Oakes

formula. Oakes should have said "over any infinitesimally small

interval of time ..." rather than
"

over any period of time, no matter

how small ..." Precisely, then: the rate of change of the balance

at any time is proportional to the balance at that time; that is,/' = kf,

where k is the interest rate (0.05 above). Thus, the problem is to

find a solution / for the differential equation y' ky
= 0 so that

/Oo) = *o

19. Population explosion. Population tends to grow also according

to the above differential equation. That is, it is assumed that every

individual has the same propensity to reproduce and that propensity
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is independent of time. Thus over any infinitesimal period of time

the ratio of the increment in population to the initial population is

proportional to the time elapsed. (You know what mobs are like:

the larger they are the faster they seem to grow.) This assertion is

supposed to be true for brief periods of time ; thus we should more

precisely assert that the rate of change is directly proportional to the

total population; thus if/ is the total population,/' = kfi where the

constant k is called the growth rate.

In some societies the growth rate varies with time; among certain

mammals it peaks at certain times of the year. In these cases the

population as a function / of time satisfies a differential equation :

f'(t) = k(t)f(t), where k(t) is the variable growth rate. It may even

happen that the growth rate depends on the total population; in a

well-regulated society (1984) this would be the case. Then the

population function is a solution to a more complicated equation,

/ = Ky)y.

20. Survival of thefetahs. On a remote volcanic atoll in the South

Pacific there live only two species of animals, the fetahs and the

garibs. These animals are essentially vegetarian and there is an

everpresent undergrowth to feed them. However fetahs especially

love to eat garibs and garibs find the succulent fetahs hard to resist.

Now each fetah tends to reproduce at the rate of one young each per

year, and consume garibs at the rate of 7 per year. Conversely

the garibs have only one young per year and eat fetahs at the rate of

17 per year. Thus the increment A/ kg of fetahs and garibs in a

year should be given by

A/=/0
- Hg0 Ag = g0- lf0 (3-22)

where f0,g0 are the initial populations of these groups. However,

the Oakes reasoning must be applied to this case; because as the

population changes, it will continually affect the increment. The

solution is, as in the above case, to rewrite (3.22) as a differential

equation. If f(t), g(t) are the populations of fetahs and garibs at

time t, then these equations describe the growth off
and g:

f'=f-iig g'=g-7f

21. The biotic matrix. On a less remote island there are n different

species of animals, all ofwhich have some
effect on the growth patterns

of all the others (some feed on others; some house, or protect others).
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This kind of society can be represented by a biotic nx n matrix

A = (a/). The (i,j)th entry is described as follows: The increment

in the rth species in one year which is attributable to each member

of the y'th species is a/. (Thus the effect of one member of the /th

species on the rth species in an interval of time Af years, is a- At .) If

/0) = (f1^), . . . ,/"(0) is the population function on this island,

then this differential equation must be satisfied:

f'=Af (3.23)

22. Particle motion. We consider now the motion of a particle

in R". Let f(f) be the location of that particle at time t . f is thus an

Revalued function of a real variable. The rate of change of position

at a time t0 is the limit as t -> t0 of

-J_(f(0-f(to))
i i0

thus is f'Oo), called the velocity of the particle at f0. The rate of

change of velocity, f", is the acceleration of the particle.

The velocity vector has both magnitude and direction; we can write

f
'

(f) = v(t)T(t) (at least when f
'

# 0), where v(t) is a positive function of t,

and T(f) is a unit vector. T(f) points out the direction in which the particle
is traveling at time t and v(t) is the speed at which it is moving. Also, v(t)

can be given the following description. The length of the path that the

particle traces out in a certain period of time is the distance traveled by the

particle. \v(t)\ is also the rate of change of that distance at time t. We will

have to await a full discussion of arc length (Section 4.2) before justifying

this; however some heuristic arguments are possible (see Problem 20).

According to this description, the distance s(t) traveled by the particle from

time t0 to t is a solution of the differential equation y' = ||f '(t) || with s(t0) = 0.

We would hope that there is only one solution, for there is no further way to

determine this function. (Fortunately, by the fundamental theorem of

calculus this problem has a unique solution.)

Consider, for example, a particle moving on the unit circle in the plane.
Let / be the position function of this particle. Let s(t) be the arc length on

the circle from the point (1, 0) to /(f) at time f. Then (since arc length on

the unit circle is the same as the angle)

f(t) = (cos s(t), sin s(t))
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The velocity vector is /'(f) = s'(t)(- sin s(t), cos s(t)). Notice that

k'(OI = l/'(OI, giving further weight to our description of speed above.

Notice also that /'(f) is tangent to the circle at the point /(f); this reflects

the fact that the motion is constrained to the circle. Differentiating further,
we find that the acceleration is

f"(t) = s"(t)(- sin s(t), cos s(t)) + s'(f)2(- cos s(t), -sin s(t))
= s"(t)T(t)-[s'(t)-]2f(t)

Thus the acceleration has a component tangent to the circle (in the direc

tion of the motion) whose magnitude is the rate of change of speed, and a

component perpendicular to the direction of motion, whose magnitude is

equal to the speed squared. For example, if the particle is rotating around

the circle with constant speed, it is accelerating toward the center of the

circle.

According to Newton's laws of motion the situation is as follows. Given

a particle at time f0 situated at p0 and having velocity v0 ,
all further motion

is determined uniquely by the forces acting on the object. The motion is

determined by this law: the acceleration is directly proportional to the force

acting on the particle. Thus, in the absence of any forces, if f(f) is the

position of the particle at time t, we have

fOo) = Po f'0o) = vo f"0) = 0 allf

and f is uniquely determined by these conditions. We say that f is a solu

tion of the differential equation y" = 0 with the initial conditions y(0) = p0 ,

y'(0) = v0. Newton's laws require that the solution exists and is unique.

Mathematics bears this out ; the solution is f(r) = p0 + fv0 . Thus, in the

absence of force, a particle will move with constant velocity, that is, in a

straight line at a constant speed.

Now, in general, the mechanics of motion can be described as follows.

There is a function F defined on R" x R taking values in R". The value

F(x, f) represents the force that will act on a unit mass acting at point x at

time t . The function F is called a force field. A particle ofmass m situated

at the point x will experience the force mF(x, t) at time t. According to

Newton's law it will accelerate in the direction of F. The magnitude of this

acceleration is determined by or according to this announcement of
Newton's

law : Force = mass acceleration,

mF = nza

(a = acceleration).
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Suppose we place a particle of mass m at p0 with velocity v0 into this

situation at time t0 . Let f be the function describing its subsequent motion

according to Newton's law. Then at time t it is at f(f) and it experiences a

force F(f(0, 0- Thus we have

f"(0 = F(f(0,0

Thus f is the solution of the differential equation y" = F(y, 0 with the initial

conditions f(f0) = p0 , f'Oo) = vo Newton's laws require that the solution

exist uniquely. In the next section we shall show that for smoothly varying
force fields this is the case.

PROBLEMS

11. Find all complex-valued solutions of the differential equation

(/)2+l=0.

12. Solve the differential equation y' = y with the initial condition

y(0) = 0.

13. (a) How long will it take 100 dollars to double at a compound
interest rate of 5 % per year ?

(b) How long will it take 350 dollars to double at the same rate?

(c) How long will it take 100 dollars to double at a rate of 10%

per year?

14. It is observed that radioactive elements decay into heavy metals. It

is assumed that the probability of any given atom decaying is independent
of the particular atom. Let k be the probability that a given atom of a

particular element will decay within one year. Show that the function /
is governed by the differential equation y' = ky if /(f) is the mass of the

given element after time f.

15. The time it takes for a radioactive element to halve in mass is called

the half-life. If an element has a half-life of 14 million years, find the

constant k of Problem 14.

1 6. Why is Oakes' formulation of the interest problem wrong ? Can you

solve equation (3.21) so that it holds for a specified period; that is, given

n, find/so that (3.21) holds for ti = k/n, t2=(k+ \)/n, 0^k<nl

11. A weight ofmass m is suspended from a rigid support by a spring of

natural length L. According to Hooke's law the spring produces a

"

restoring force
"

which is proportional to the displacement from its natural

length, and directed toward its natural position (Figure 3.6). Let us denote

this constant of proportionality by k. Let x denote the distance of mass

from the natural position, where the positive direction is upward. Then the

mass has two forces acting on it: a force Fi = kx due to the restoring effort

of the spring, and the force of gravity F2 = mg. If the mass is at rest, then

there is no acceleration, so by Newton's laws Fi + F2= 0, from which we

may conclude that the rest position is at x k~1mg. Now suppose we
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Figure 3.6

displace the mass by an amount ha and let it go. Using Newton's law find

the differential equation governing the subsequent motion.

18. A certain insect lays its eggs in the flesh of a mammal. Each insect

hatches h eggs per year. Now every time one of these eggs hatches in a

horse, it kills the horse. Assuming the total mammalian population is a

constant T, we can derive the differential equations governing the growth of

this insect and horse population if we also know the natural death rate (dt)
of the insect and the natural birth and death rates (bH , dH) of the horse.

Let I(t), H(t) be the population of the insect, horse, respectively. During

a period of time Af , bH H- Af horses are born, and dH- H At horses die of

natural causes. Now each insect hatches hAt eggs during this interval;

the probability that its host is a horse is HjT. Thus there are hl(H\T) Af

horse deaths attributed to the insect during this time interval. The change

AH in the horse population is thus

AH = bHHAt - dHAt - hi(f)"
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Find the corresponding change in the insect population and deduce that these

differential equations govern the growth:

hH
H' = (bH-da)H- I

V =hT-dII

19. It was observed by Galileo that the gravitational attraction of the

earth is constant. In the small, we may assume the world is flat, thus we

take as a model R3, and assume that the plane z = 0 is the surface of the

earth. The gravitational attraction then is a force field F(x, v, z) =

(0, 0, g). Suppose a particle of mass m is at p0 and has a velocity v0 at

time f0 . Let f (f ) be the position of this particle at time f. What is the

differential equation governing the motion of the particle? Can you

solve for f ?

20. Suppose there is a wind coming out of the east which exerts a force

(c, 0, 0) on our particle, no matter what the position is. Now find the

equation of motion.

21. Suppose that on the plane there is a centripetal force field propor

tional to the distance from the origin. At the time f = 0, a particle is

placed at the point z0 and has a velocity v0. What is the equation of

motion ?

22. We can try to find a formula for the length of a curve by approximat

ing it by a line segment. Let

x = x(f) v = v(f)

be the equations of a curve, and let (x(t0), y(t0)) be a point on the curve. For

a very short period of time. Af, the curve can be replaced by its tangent line

(see Figure 3.7). The length of the curve between (x(t0), y(t0)) and

(x(t0 + Af ), y(t0 + Af )) is then approximately equal to ((Ax)2 + (Ay)2)1'2.

V(ax)2 + (aj)

(jr(f + A/),y(f + if))

Figure 3.7
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Then the rate of change of arc length over the interval Af is

((Ax)2 + (Ay)2)1'2

Af

Letting Af -> 0 deduce that the rate of change of arc length along the curve

is the length of the vector (x'(f ), y'(t )).

3.4 Some Techniques for Solving Equations

The fundamental theorem of calculus is of course the basic existence

theorem on solutions for differential equations, and integration is the primary

tool. Thus an equation of the form

y' = h(x)

has the solution f(x) = \* h(t) dt + c, and this solution is unique but for a

constant. Let us state the same result for vector-valued functions.

Definition 3. Let h = (hu . . .

, h) be a continuous Revalued function on

the closed interval la, b~] . Define the integral of h over the interval [_a, b~] to be

r>-(jy...j\.)
Theorem 3.2. Let h be a continuous Revaluedfunction defined on the open

interval (a, b) and leta<c<b. Then the differential equation

y' = h(x) y(c)=Po
(3-24)

has the unique solution h + p0-

Proof. By the fundamental theorem of calculus and Proposition 1
,

f(x)= f h+Po

is differentiable and satisfies the conditions (3.24). If g is another solution, then

g' =/' on (a, b) so each coordinate of* -/has
zero derivative and thus is constant.

Since g(c) =p0 =/(c), this constant is zero,
so g =/.



260 3 Ordinary Differential Equations

Separation of Variables

There is a class of differential equations which can be solved simply by

integration, just by recalling the chain rule. This is the class of first-order

equations (only the first derivative of the unknown function y appears) in

which the variables separate ; that is, these are equations of the form

h(y)y'=g(x) (3.25)

The left-hand side appears to be the result of application of the chain rule;

we can rewrite (3.25) as

d_
dx

y(x)

h = 000

Thus, if we let H be an indefinite integral of h, H = j h, then (3.25) becomes

[#OyOO)]' = 0OO

so we can integrate :

H(yOO) = fg (3.26)

If we can solve (3.26) for y(x), we will have the desired explicit expression of

y as a function of x.

Examples

23. yy' = 1. Let H(y) = J y = y2/2. Then the equation can be

rewritten as [//(yOO)]' = 1, or H(y) = y2/2 = x + c, where c is a

constant to be determined by the initial conditions. Thus the general
solution of yy' = 1 is y = (2(x + c))1'2.

24. y' = x2y2. Again, we write

y"2y' = x2

Integrate :

-i
*3

-y
1
=

y
+ ^
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so

-3

y'x^Tc

25. y' cos y = sin x. After integrating this becomes

sin y = cos x + c

or y
= arc sin(c -

cos x). A particular solution is/(x) = x -

n.

26.

,
1 + x

After integration we have

y2 x2
y +

Y
= x +

Y
+ c

It is now a bit difficult to write the solution explicitly as a function of

x, but it is possible using the formula for roots of a quadratic

polynomial :

-2(4 + 8x + 4x2 + c)1/2
y
=

2
(128)

The constant c is presumably determined by the initial conditions, and

with it the function y. Notice however, that each value of c gives

two candidates for the solution, but they may not both be solutions.

For example, suppose we seek the solution of (3.27) with the initial

condition y(0) = 0. We arrive at (3.28) and upon substituting

x = 0, y = 0, we obtain

Q_-2(4 + c)1'2

2

so we must choose c = 0 and the positive sign before the radical.

This boils down to y
= x. If the initial condition is y(0) = -2, again

c = 0, but we must take the negative root, obtaining y= -(x + 2).
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Notice also that upon substituting the initial condition y( 1) = 1

into (3.28), we find c = 8 and both roots give solutions to this problem;
that is, both functions y = x and y

= (x + 2) are solutions with this

initial value. Thus it is not always true that the initial conditions

uniquely determine the solution of the differential equations. Looking
back at the original equation (3.27) we find what might be a clue to

this bizarre behavior: the function (1 + x)(l + y)"1 is ill-behaved

at y
= - 1.

Uses ofExponential

We shall now turn to the study of the exponential function ; because it is

the solution of such a simple differential equation it gives rise to several

techniques. Recall from Chapter 2 (Definition 21) that the differential

equation

V =

cy XO) =1 c any complex number (3.29)

has a unique solution, denoted ecx. Notice that

(ecx)' = cecx, (ecx)" = c2ecx, ..., (ecx)(s) = csecx (3.30)

These remarks suggest a method of attack on another class of equations.

A homogeneous constant coefficient equation is one of the form

y(k> + ak_iy<k-++ a,y' + aoy
= 0 (3.31)

We shall consider this class in greater detail in Section 3.6. Let us compute
the left-hand side of (3.31) under the substitution y = ecx. By (3.30),

akecx + ak-xck~1ecx + + axcecx + a0 ecx

= (ak + a^^'1 + + a,c + a0)ecx (3.32)

We find that ecx is a solution of (3.3 1) if c is a root of the polynomial appearing
in (3.32).

Examples

27. Find solutions for y" y
= 0.

Substituting y
= ecx, we obtain (c2 -

\)ecx = 0, thus we must have

c= +1. We conclude that ex,e~x are solutions. Notice also that

for any a, b, aex + be~x is also a solution.
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28. Find solution of y'" + y
= 0.

Here substitution of y
= ecx yields (c3 + l)ecx = 0, so c must be a

cube root of 1 . Thus we obtain three solutions :

e~x einlix e-'"l3x

Of course, all functions of the form ae~x + be'",3x + ce~iK/3x are

solutions.

29. Solve the initial value problem

y'"+v' = o y(0) = 0 y'(0) = \ y"(0) = l (3.33)

Substituting y
= ecx, we obtain (c3 + c)ecx = 0, so we must have

c = 0 or c = i or c = i. Thus all functions of the form

ae0x + beix + ce-'x

are solutions. Let us see if we can solve for a, b, c by substituting the

initial conditions :

y(0) = 0:a + b + c = 0

y'(0) =l:ib-ic=l

y"(0)=l: -b-c=\

We can solve this system, obtaining

a = 1 b = - c =
-

2 2

Thus the function

/(X) = i-!V-^Vfa

will solve our problem.

30. Solve the initial value problem

v" + y
= 0 y(0) = l /(0) = 0 (3-34)
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Here we have, as general solution aeix + be ix. Substituting the

initial conditions, we obtain

a + b = 1 ia ib = 0

and thus a = b = 1/2. Thus we obtain as solution

f(x) = i(eix + e~ix)

Notice that we already know from calculus the solution /(x) = cos x. We

shall learn in the next section that the initial value problem (3.34) has a

unique solution. Thus this interesting equation follows:

cos x = \(eix + e~ix) (3.35)

We shall leave to the exercises the verification of these other relationships
between the trigonometric and exponential functions:

sinx = 2^(e'je-e-'x) (3.36)

e'x = cis x = cos x + / sin x (3.37)

First-Order Linear Equations

Now if /is a differentiable function, so is ef, and (ef)' =f'ef. Letting

y
= ef, we obtain the differential equation y' =/'y. Thus, working back

wards we see how to solve an equation of the form

/ = g(x)y

Namely, exp(J g) is a solution. With a little more ingenuity we can see how

to explicitly solve any linear first-order equation. These are differential

equations of the form

y'+/00y = <7(x) (3.38)

where / g are continuous in an interval about a. Let H(x) = \* / and

consider the new function z = e"y. Then z' = eHy' + H'eHy = eH(y' +fy),
since H' =/. Since by (3.38), y' +fy =

g, we have this equation in z:

z' = eHg
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which is solvable by integration :

J.XeHg + c

a

Finally, y = e~Hz, thus the general solution of (3.38) is found:

y
= e~Hz = e~H f eHg + ce~H (3.39)

where H is the indefinite integral of/ and c is to be found by substituting for
the initial condition.

Examples

31. y' + xy
=

x, y(0) = 0

Here we take H = j" x = x2/2 and consider z = y exp(x2/2). Thus

the corresponding equation in z is

z' = y' exp(x2/2) + yx exp(x2/2)(y' + xy) = exp(x2/2) x

Thus

z = | exp(x2/2) xdx + c = exp(x2/2) + c

so

y
= z exp(-x2/2) = 1 + c exp(-x2/2)

Substituting the initial condition y
= 0 = c + exp(-02/2) = c + 1,

so c = - 1. The solution thus is y = 1 - exp(-x2/2).

32. y' - 2x"Jy =

x, y(l) = 0.

Here we take H= J 2/x =
- 2 In x and consider z = ye

nx
=

x"2y. Thenz' = -2x"3y + x-2y' = x"2(y'-2x-1y) = ^"2^=^ '

We obtain

z = In x + c and y
= x2 In x + ex2
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EXERCISES

19. Solve these differential equations:

(a) x2exp(x2)y' = x3,v(0) = l

(b) y' = x sin x + cos x, y(0) = 0

(c) (xm /(f)) =(t,t2,t 3), (x(0), y(0), z(0))
= (0, 1 , 0)

(d) z(t) = e" + ((1 + i)t)2, z(0) = 1

20. Solve these differential equations:

(a) y'=y2

(b) y' cos x = cos y

(c) x2 + y2y' = 0

(d) y'=(y2-l)(x2-l)

(e) y"=xy'

(f) y'=(\+x2)y

(g) xy2 + (l-x)/ = 0

(h) y' = e*+"

(i) y' = sin(x + y) + sin(x - y)

21. Solve these differential equations:

(a) y' + xy
= cos x, y(0) = 0

(b) y' cos x + y sin x
= tan x, y(0) = 1

(c) y' + xy
= x2,y(0)=0

(d) e"y' + e*y = e-,x, y(0) = 1

(e) y'=ye-",y(l) = l

22. Solve these differential equations:

(a) y'" = 2y" + y'
-

2y = 0, y(0) = 0, y'(0) = 0, y"(0) = 1

(b) y" - 2/ - y
= 0, y(0) = 1

, y'(0) = 0

(c) y'"
- (1 + 3i)y" + (3i- 2)y' + y

= 0, y(0) = 0, y'(0) = 1
,

y"(0)=0

3.5 Existence Theorems

In this section we shall state and prove the basic existence theorem for

ordinary differential equations. The method is due to Picard and is that of

successive approximations. (Recall how we found, in Section 2.10, the

solution to the equation y' = cy.)
The first theorem is about first-order equations. We shall first illustrate

the method of successive approximations.

Example

33. Successive approximations. There is one and only one solution

of

y> =ex + y y(0) = 0
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Now if/(x) solves this equation, then by integration we see that

/(x)= ffV)dt= \\e' + f(ty]dt

Thus if T is the transformation defined on continuous functions by

Tg(x) = fV + 0(0] dt

we see that Tf= f; that is, / is a fixed point of T. According to

Newton's method we should be able to find T as the limit of the

sequence /0 , TfQ, T(Tf0), ..., T"f0 ,
... . Let us compute this

sequence. We may choose any function for/0 , say f0 = 0. Then

T/0 = fe' dt = ex-l

T2f0 = T(T/0) = f(2e< - 1) dt = 2ex - 2 - x

T3f0 = T(T2f0) = j\3e< - 2 - t) dt = 3ex - 3 - 2x - %-

T% = 4ex-4-3x-2X--%-

x2 x3 x4

T5/0 = 5^-5-4x-3y-2---

x2

T% = nex-n-(n- l)x -(n-2)-

--(n-j) 77-
xj x""1

y! (n-1)!

We can't tell yet that this sequence of
functions converges, but if we

replace ex by its Taylor expansion we can get a better picture:

co Y-* n 1 y/

T"fo = ln--Y(n-j)-
j=o j! j=o J-

-l XJ X1 "^ Xj n-1 XJ x1

= I In
- (n -y)]

-

+n
- =

^(jyj+ ;! (3.40)
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As n -> oo the last sum in (3.40) tends to zero, and we obtain

lim T% = -^ = xex
n->oo y = o U 1)!

Indeed xex solves the given problem! Now we would like to show

that the solution is unique. This is easy, because it is easy to verify
that T is a contraction :

Tf(x)
-

Tg(x) = fV + f(t) -e'- g(t)) dt = f(/(f) - g(t)) dt
'o Jo

so in the interval |x| < \, say

\Tf-T9\<>\\f-9\

Thus if T/=/ and Tg = g, we obtain i||/- g\\ > \\Tf- Tg\\ =

||/ g ||, which is possible only if/= g
= 0.

Now, the most general differential equation of first order that we shall

consider is

v' = F(x, y) (3.41)

where F is a real-valued function defined in a neighborhood of the point

(a, b) in the plane. A solution is a function y =/(x) defined for x in a

neighborhood of a with these properties

f(a) = 6 /'(x) = F(x,f(x))

If/is a solution, it is a fixed point of the transformation

Tg(x) = fV(f, ^(O) dt + b (3.42)
"a

The fixed point will be found by the method of successive approximations :

/0 = anything, fx = T/0 , f2 = Tflt and in general / = T/n_x. In order to

guarantee that this sequence has a limit and the fixed point is unique, we

must guarantee the hypothesis of the fixed point theorem. More precisely,
we must know enough about the function F in order to guarantee that the

transformation defined by (3.42) is a contraction on the space of continuous
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functions on a suitable interval about a. It suffices (as the proof below

shows) if the following condition is satisfied.

Definition 4. Let F be a function of two variables x, y in the domain
D in R"+m (x ranges in R" and y in Rm). F is Lipschitz in y if there is a

constant M such that

\F(x, yt) - F(x, y2)\ < M\yt
-

y2\

for all yl,y2 such that (x, yt) and (x, y2) are in D.

Notice that since (1 + x)(l +y)_1 is not Lipschitz near y= -1, we

cannot apply Picard's theorem; and in fact it does not hold as we saw in

Example 26. We have allowed x, y to range through many variables because
of the generality we need for Picard's theorem. Notice that if n = m = 1,
F will be Lipschitz if the partial derivative dF/dy exists and is bounded. For

by the mean value theorem (along the line x = constant)

dF
F(x, yt) - F(x, y2) = (x, OCfi - y2) yt < < y2

dy

and thus we can take the M ofDefinition 4 to be the bound of dF/dy.
Now let us turn to higher order equations. A differential equation of

order k is given in the form

/k) = F(x,y,y',y",...,yW) (3.43)

where F is a function defined in a neighborhood of (a, b0, .. ., /Jt-i) in

R*+1. A solution is a A:-times differentiable function y =/(x) with these

properties

f(a) = b0 ,f'(a) = bu... jC-'Xa) = bk.it

fm(x) = F(x,/(x),/'(x), . . . ,f(k^\x))

We would like to solve (3.43) with the given initial conditions by successive

approximations, but the method is not transparent. However, the problem

does reduce to the first-order case by means of a great idea. First, we

illustrate.
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Example

34. y"=2y'-y,y(0) = 0,y'(0)=l.
We introduce a new unknown function z and require that y' = z.

Then the given equation is reduced to the system

y' = z y(0) = 0

z' = 2z -

y z(0) = 1

which is first order. Thus, what we seek is the vector-valued solution

of the vector differential equation

(y, z)' = (z, 2z
- y) (y(0), z(0)) = (0, 1)

This we can rewrite by integration and thus solve by successive

approximations. Precisely, the solution is the fixed point of the

transformation (defined on pairs of functions) :

T(f, g)(x) = ffo(0, 2g(t) - f(t)) dt + (0, 1)
'o

Let us compute some of the successive approximations.

(/o,</0) = (0,l)

(fi,9i) = T(f0,g0) = (x,2x+l)

(f2 , 92) = T(fu gt) = (x2 + x, fx2 + 2x + 1)

(A , g3) = T(f2 , 92) = (i*3 + x2 + x, fx3 + \x2 + 2x + 1)

ih,9d = T{f3,g3)

/x4 1 5x4 2 3 \
=

\3!
+
2
*3 + *2 + *'

~4\
+

3
X* +

2
%1 + 2X + X

)

It is now not hard to surmise that the general form of(/ , gn) is

/ x" x""1 , \
-, 7T7 + 7 ^T, +

- " "

+ x + X, . . .

\(n-l)! (n-2)! /

and that lim/ = xex.

This then is the typical means of reducing the higher order equation to

first order. Given the Equation (3.43), we introduce new unknown functions
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y0 , yi, , yk- 1
and replace (3.43) by the first-order system

y'o = J^

y\ = y2

yk-i =F{x,y0,yl, . ...y^)

y0(a) = b0, yi(a) = bl,..., yk-i(a) = bk.Y

Now the general existence theorem for &th-order equations falls directly
out of the theorem for first-order equations for systems. The beauty of this
trick is that Picard's theorem is no harder for systems and consists merely of

verifying that the appropriate transformation defined by an integral on

vector-valued functions is a contraction, so the fixed point theorem applies.
Here, then, are the fundamental existence and uniqueness theorems for

ordinary differential equations.

Theorem 3.3. (Fundamental Existence and Uniqueness Theorem) Let

(a, b) be a point in R x R", and F an Revalued Lipschitz function defined in a

neighborhood of (a, b). There is an s > 0 and a unique continuously differenti
able R" valued function f defined on (a- e,a + e) such that ((a) = b and

f'(x) = F(x, f(x))for all x in (a -

s, a + s).

Proof. The idea behind the proof is to change the given problem to a problem

involving integration. In fact, by the fundamental theorem of calculus, our

desired function is that function f such that

f(x)=b+ fF(f, f (f)) rff

for all points x near a. That is, we seek a fixed point of the function T defined on

[C((a e, a + e))]" (the space of n-tuples of continuous functions on (a e, a + e))

7T(x) = b+ \\(t,f(t))dt

Because F is Lipschitz, we can choose e so that T is a contraction. We shall of

course refer to the distance between functions introduced in Chapter 2.

First, since F is Lipschitz in a neighborhood of (a, b), there is an M and some

rectangle B centered at (a, b) such that

|F(x,y),F(x',y')l<M|y-y'|
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for all (x, y), (x\ y') in that rectangle. In particular, F is bounded on that rectangle

byii:= |F(a, b)| + Me0. Let e < fi0tf"\ M~l/2, e0. Let X be the set of n-tuples

of continuous functions f on the interval (a e, a + e) such that || f b || < e0 . If

feX, then for all f e (a e, a + e), (t, f (f)) is in B and F is defined on B, so the

transformation

7T(x) = b+ f F(t,f(t))dt
"a

is well defined on X. We verify now that it is a contraction on X. Let f e X.

Then

H7T(x)-b||< f |F(f, f (f)) <7f
Jfl

<K\x-a\ <Ke<e0

Thus ||rf-b||<e0,sorf6^ralso.

Let f, g e X.

\\Tf(x)
-

7g(x)|| < f |F(f, f(f)) - F(f, g(f)| dt
J a

<m\ llf-gll*

<M|x-a| ||f-g||<Me!|f-g||<i||f-g||

Thus T is a contraction, so by the fixed point theorem it has a unique fixed point f.

We have

f(x) = b+ f F(f,f(f))rff

so by the fundamental theorem of calculus f is continuously differentiable (because

the right-hand side is so), and f (a) = b, f '(x) = F(x, f (x)) for all x e (a e, a + e).

Certain remarks on this theorem are necessary. First of all, the general
differential equation of first order is of the form F(y', y, x) = 0, noty' = F(y, x).
The question arises: when can we rewrite the relation F(y', y, x) = 0 in the

form of Picard's theorem, for in this case we will know that solutions exist.

This question, of explicitly solving an equation H(u, v) = 0 for one of its

variables, say u (so that there is a function G(v) such that H(u, v) = 0 if and
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only if u = G(v)), will be discussed further in Chapter 7. (Recall from

Theorem 2.16 that we have a condition for functions F of two real variables:

dF/dy # 0. We shall see that this is the general condition.)

Secondly, Picard's theorem only asserts the existence of local solutions.

Supposing that F(x, y) is defined in / x R", / any interval in R, we can ask

if there exists, for each y0 e R", a function defined on all of /such that

f '(x) = F(x, f(x)) for all x 6 /

f(x0) = y0 for Siven ^o^

The answer is in general, no. For example, the function F(x, y) = y2 is

certainly Lipschitz in any rectangle, so local solutions always exist. But we

already know that if y' =y2, y must be of the form (c x)"1 for some

constant c. Thus, if we impose an initial condition /(x0) = c0 ,
the (local)

solution is

/W = (I + x0
-

x)
On any interval on which the solution exists it is given by this formula (see

Exercise 19(a)). Thus there is no solution to this initial value problem in any

interval containing the point x0 + l/c0 .

We now turn to equations of higher order and the reduction to systems of

first order. Let us represent a point of R1+<*+1>" by coordinates

(x, y0 y^ where x is a real number and the yt range through R".

Theorem 3.4. Let (a0 , b0 ,...,bk) e R1+<*+1>" and let F be an Revalued

Lipschitz function defined in a neighborhood of (a0,b0, ..., bk). There is an

e > 0 and a unique (k + l)-times continuously differentiable
Revalued function

defined on(a-e,a + e) such that

f(a) = b0 fii\a0)^bi l<i<k

F(x,f(x),f'(x),...,f(k\x))=fk+1)(x)

Proof. Consider the R(t+1 '"-valued function G defined in a neighborhood of

(a, b0,..., bk) by

G(x, y0,...,y.)= (yt, > *-> pix, Vo ,
. , y<d)
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Clearly, G is Lipschitz wherever F is. By Theorem 3.3, there is an e > 0 and a

unique function g defined in (a e, a + e) taking values in ,R<*+1>" such that

g(a) = (b0,...,bk)

(3.44)

g'(x) = G(x, g(x))

Writing g =(g0, ...,gk) we have g,(a)=b, and (g0 ,
. . .

, gk)'(x) = (gi(x), . . .
,

gk-i(x), F(x, g0,..., gk)). Thus, splitting this into coordinates, gl =g,+i,0<,i<k

and yk(x) = F(x, g0 gk). Thus g6 = gi , gl = g'i = gi and in general g0J) = gs .

Thus

g0(a) = b0 gX\a) = b, l<i<k

and

g0k+lKx) = F(x, g0(x), g6(x), ..., g0k\x))

which solves our problem. The uniqueness follows immediately, for if /is a solu

tion of our original problem then clearly (/,/', ...,/(") solves (3.44), but the

solution of that is unique.

PROBLEMS

23. Let h0, ..., hk-i be infinitely differentiable functions on the interval

/ and suppose f is a solution of

( = 0

Show that f also must be infinitely differentiable. (Hint: Any solution of

y<t+1) + A*-.y< + kf(h,-i + h',)ya) + h0 y = 0
1=1

is also a solution of the first equation.

24. Prove: If {/} is a sequence of bounded functions in C(I) such that

ll/n /n-i II < C, where 2 C, < oo, then the sequence {/} converges to a

continuous function.

25. The differential equation y" + y
= 0 has unique solutions corres

ponding to the initial conditions

y(0) = l y'(0)=0

y(0) = 0 y'(0) = l
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respectively. Let C, S be these two functions. Prove :

(a) C2 + 52 = l

(b) S' = C, C' = -S

(c) S(2x) = 2S(x)C(x)

(d) e" = C(x) + iS(x)

Of course, the reader will recognize that C(x) = cos x and Six) = sin x

and thus these equations should follow. However, the intention here is to

verify these equations on the basis only of the defining differential equation.
26. Sometimes it is of value to find a linear differential equation which

has as its space of solutions the vector space spanned by n given functions.

We find an equation of nth order by substituting the n functions in the

equation y(n) + ^-iy<""1) -I +goy = 0.

For example, suppose we want to find the linear equation whose solution

set is the span of x and sin x. We try a second-order equation

y" + gy' + hy = 0 and substitute x and sin x :

g + hx=0

sin x + g cos x + h sin x = 0

We can solve these linear equations :

sin x x sin x

hix) = g(x) = -.

sin x x cos x sin x x cos x

Thus the differential equation is

(sin x x cos x)y" y'x sin x + y sin x
= 0

Find the linear differential equation whose solution set is the vector space

spanned by the given set of functions.

(a) x, x2, x3

(b) ex, e", ea
+ nx

(c) xex, exp(x2)

(d) sin x, cos x, tan x

(e) x sin x, cos x

(f ) x, ex, tan x

3.6 Linear Differential Equations

The most important and best understood class of differential equations

are those which are linear in the unknown function and its derivatives. We

now give the definition of this class.
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Definition 5. Let / be an interval in R. A linear differential operator of

order k is a transformation from the space of A>times differentiable functions

on /to the space of continuous functions on /of the form

L(/) = /(k)+I1"i/(0 (3.45)
;=o

where h0 ,
. . .

, hk_i are given continuous functions on /.

Notice that the coefficient of the highest order term is 1 . More generally,
it could be any function hk . In this case, if hk is never zero on /, we could

divide by hk and obtain the form (3.45). If hk sometimes has the value zero,
then the theory to be presented here will fail (see Problem 31).
A transformation of the type (3.45) is linear, in the sense that

L (/+ g) = L(f) + L(g) L(cf) = cL(f)

It follows that the collection of functions which get mapped into zero by L,

K(L) = {/ L(f) = 0}, the kernel ofL, is a vector space of functions. We shall

now show that this is a fc-dimensional vector space.

First of all, the equation /(/) = g, for a given continuous function g

defined on the interval / has a solution / on the whole interval, which is

uniquely determined by given initial conditions f(a) = f>0, ...,/(*"1)(fl) =

h-i-
In other words, in this case, Picard's theorem is more than local ; it gives

a solution on the whole interval. We shall verify this fact below (in Pro

position 9). Thus, we can state :

Proposition 6. Let I be an interval in R, a el, and L a linear differential
operator of order k defined on I.

(i) if g is continuous on I and b0, ...,bk_l are any real numbers, there is a

unique Ck functionf defined on I such that

f(a) = b0 , f'(a) = bu... J^Xa) = 6k_i

(ii) The space K(L) ofsolution on I ofLf= 0 is a vector space ofdimension k.

Proof.

(i) will follow immediately from Proposition 9 below according to the same

procedure as in the preceding section for reducing a th-order equation to a first-

order system.
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(ii) Let Ea be the transformation from Kit) to Rk defined by evaluation at a:

E*(f) = (f(a),f'(a),...,f-lXa))

By the existence and uniqueness theorem, E is one-to-one and onto. Thus K(L)
also has dimension k.

Let us reconsider briefly the case of constant coefficient linear operators :

L(/) = /W+Z1i/( (3.46)
( = 0

We associate to L the polynomial

PL(X) = Xk+t^aiXi
i=0

(called the characteristic polynomial of L). We have already seen, by sub

stitution off(x) = erx, that if PL(r) = 0, then e is in K(L). Now if PL has k

distinct roots rx,...,rk, then all of the functions exp(rxx), . . .
, exp(yvO

are in K(L), as well as all linear combinations of these. Since K(L) has

dimension k, these exponential functions form a basis for K(L) and every

solution L(f) = 0 is of the form

At exp(rtx) + + Ak exr>(rkx)

where the Aj are to be determined by the initial conditions. In case PL

does not have k distinct roots (for example, PL(X) = X2 - 2X + 1), the

situation is more complicated. We shall complete this discussion in the

next chapter, where we shall also discuss the question offactoring polynomials.

Examples

35. Solve ym + 3y" + 2y' = 0 with the initial conditions y(0) = 0,

y'(0) =1, y"(0) = 1. The characteristic polynomial, X3 + 3X2 + 2X

has the roots 0,-2,-1. Thus the general solution is of the form

A + Be~2x + Ce~x. We solve for A, B, C by substituting the initial

conditions:

A+B+C=0

-2B-C = 1

4B + C = l
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Solving, we find A = 2, B = 1
,
C = 3, so the solution is

f(x) = 2 + e~2x - 3e~x.

Linear Systems with Constant Coefficients

We now turn to the solution of systems of linear differential equations
with constant coefficients. First, let us try to see an example through to the

end.

36. Consider the system

x[ = xx + x2 xt(0) = a

x'2 = Xj x2 x2(0) = b (3.47)

According to the fundamental theorem we can approach a solution

by successive approximations using the transformation

T(xi(0, x2(f)) = f (xj(0 + x2(0, xx(f)
- x2(f)) dt + (a, b) (3.48)

Jo

It is convenient to use matrix notation. Thus, writing

(3.48) becomes

x=\l -l)x *() = *o

Equation (3.48) becomes

Tx(0=j^{ _jWr)dT + x0

Now, we successively approximate

Xn = Xn

x1
=

|L _1jx0dT + x0
= L _1j<x0 + ^

X2
= /0[(l -l)(l _l)0 + X0]dT + X0
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x =

=G -!) yx+(! _!)*<>+ x
ii i\3 13 ii n2 12 a n

=

ll -lj 3!
+

ll -1.) 2!
+ (l -l)' + /*

According to the fundamental theorem the series converges to the

solution

>=['+!. C -H,
k tk-\

c0 (3.49)

The formula (3.49) represents the solution in the sense that it describes

a way of computing approximations to the pair of functions xx(t),

x2(0- (The question of measuring the accuracy of those approxima
tions is important; we shall return to those questions in Chapter 5.)

However, we have not obtained formulas for the functions individually.
That is not really surprising since the functions are given by an

interdependent relation (3.47).

By analogy with the series for ex, we defined the exponential of a

matrix as

exp(M) = eM = / + f ^ (3.50)
fc=i k\

Then we can write the solution to (3.47) as

x(f) = expfL _1jx0

We now state a proposition which summarizes this discussion for general

linear first-order systems.

Proposition 7. Consider the linear first-order system of n equations in n

unknown functions :

x'(t) = Mx(0 x(0) = x0
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where x = (xu . . .
, x) and M is an n x n matrix. The solution is given by

x(t) = eMtx0

Proof. We find, by successive approximations, the fixed point of

7x(f ) = f Mx(f) dt + x0
Jo

We obtain

Xo
= Xo

Xi = MfXo + Xo

(Mt)2
x2 =

-

Xo + MfXo + x0

/(Mt)" (Mt)-1 A

By the fundamental theorem the sequence of vector-valued functions x converges

to the solution of the given differential equations. But the limit of x is given by

x(0 = [
(Mt)"'

1+ I T- (3.51)

Although we have not questioned the convergence of the series (3.50), we

know there is no problem. For, by the fundamental theorem the sequence

{x} converges, so the series in (3.51) must converge. Finally, eM is just

eM'atf = 1.

Finding the exponential of a matrix is not an easy thing to do; ordinarily

it is best to just work with the series and approximate solutions. However,

in certain cases we can obtain explicit formulas for the solution.

Examples (Eigenvectors)

37. Suppose the matrix M is diagonal. Then

(di \



3.6 Linear Differential Equations 281

and the equations are

xi = dxxu x'2 = d2x2,...,x' = dx

However, this system is not a system at all, but just n independent
equations. The solutions are

Xi
= expOAOXifO), . . .

, xn
= exp040xn(0)

Thus, in particular, we see that

(dx 0\ /expOA) 0 \

'dj \ 0 'exp(4,)/

38. Suppose that the vector of initial conditions x0 is an eigenvector
of M: Mx0 = Xx0 for some X. Then M2x0 = X2x0, ...,M"x0 =

X"x0 ,
so we can compute the solution explicitly,

x(f) = eM'x0 = (/ + I ^)x0 =

x0 + -} M"x0
\ n = i n ! / n = i n !

oo f)n

~i n!

_i_ V _
tx

x0 + 2j r x0 e x0

This computation leads us to speculate as to the existence and quantity of

eigenvectors of the (n x n)-matrix M. In general, this is a difficult quest and

still does not lead to a complete explicit solution of the differential equation
x' = Mx. However, if there is a basis of R" of eigenvectors ofM, then we

can give a complete explicit solution.

Proposition 8. Suppose Vj v are independent eigenvectors of the

(n x n)-matrixM, with eigenvalues Xlt ..., Xn, respectively. Then the equation
x' = Mx, x(0) = x0 can be solved explicitly as follows. Write x0 = c1v1 +

c"v . The solution is

x(t) = c1 exp(A1f)v1 -I + c" exp(A f)v

Proof. We compute the series (3.51) directly:

Mxo = IVKc'vi -I + Cv) = c'AtVt -| h c"Av

M 2x0 =Mfc^v, + + c"Av) = c'A,2?! + + c"A 2v

M'xo = c'A/vi -| h c"Av
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Thus

/ Mktk\ " I tk \

"("-(,+.?1Tr)^-J?,4+,?^M^)
n I tkXk \ "

= I 4*0 + I -rf- Vy
= I ^ exp(l, OVy

y=i \ fc=i k! / y=i

Examples

39. Consider the system of differential equations

*-(:Si)" >-(,J)
We find the eigenvalues and eigenvectors corresponding to this system

of equations as in Section 1 .7. Let

=(-l i)
Then det(M - XT) = X2 -3X + 2. The eigenvalues are the roots

X = 1, 2 of this polynomial. The eigenvalue 1 has an eigenspace the

kernel of

m-.=(:26 J)
The vector (1,2) spans the kernel. Similarly, the vector (1, 3) is an

eigenvector ofM with eigenvalue 2 since it is in the kernel of

--G \)
The general solution of the given differential equation is

This vector has the initial conditions x(0) = cx + c2, y(0) = 2ct + 3c2 .

Our initial conditions are (4, 12), so we can solve for ci,c2:c1= 0,
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c2
= 4. Thus, we obtain the explicit solution

x(f) = 4e2t y(0 = 12e2'

40.

*'=(_i/4 !) x()=(S)
The eigenvalues are 1/2, 3/2, and they have eigenvectors (2, 1),

(2, 1), respectively. Thus the general solution is

x(0 = cie"2(_J) + c2e3"2(^
Substituting in our initial conditions, we obtain these equations for

c-i, c2:

3 = 2ct + 2c2

3 = -Ci + c2

The solutions are ct
= -3/4, c2 =4/9. Thus the solution of the

given system is

3 t,i( 2W4 3,/2/2\ /-3/2e"2 + 8/9e3"2\
x = "

4 l-l) + 9
S ll)

=

I 3/4e"2 + 4/9e3'/3)

41.

*-(_! !)" *-(!) ,3H)

The equation for X here turns out to be (1 - X)2 + 1 = 0, so X = 1 + /'.

The root 1=1 + / gives the eigenvector (1, -i), and for the root

X = 1 -

/ we obtain the eigenvector (1, +0- Now our initial con

ditions are (1,0) = (1, -i)/2 + (1, +i)/2, and thus we obtain the

solution
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There is an easier way to solve this equation, and that consists in

recognizing that the matrix is of the form

r>)
and represents a complex number: in our case 1 /. Thus, we can

replace our system (3.53) by the single equation

z'O) = (1
- i)z(t) z(0) = 1

by substituting z(f) = x(t) + iy(t). This has the solution

z(f) = e(1-'"

which is the same as (3.53), of course,

x(f) = Re z(0 =
- (e{

l "

'>'
+ e(

1 +

')

y(0 = Im z(t) = -. (e(1-f)' - e(1+i)')

42. Find the general solution of

/I -3 3\

x'= 3 -5 3 x

\6 -6 4/

Now, after computation, we find det(M -

XI) = (-2
- A)2(4 - X),

thus M has the eigenvalues 2, 4.

eigenvalue 2:

(3 -3 3\

M-/II= 3 -3 3

\6 -6 6/

Thus the corresponding eigenvectors lie in the plane x y + z = 0.

Two independent vectors in this plane are (1, 2, 1), (0, 1, 1).
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eigenvalue 4 :

M-AI =

The corresponding eigenvectors lie on the line -x-y + z = 0,
x -

y
= 0, which is spanned by ( 1

,
1
, 2). Thus, the general solution is

43.

Hi)
This matrix is symmetric, so it has a spanning set of eigenvectors. We

already found them in Example 9: (1, 1, 0), (0, 1, 1) have the

eigenvalue 1, (1, 1, 1) has the eigenvalue a- The general solution is

The initial condition is

(-M-M-i)*(i)
Thus the solution is

XjO) = 2e' + e2' x2(t) =
- 4e' + e2t x3(t) = 2e' + e2'

44.

Hi !)* x(0)=(?) &54>
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The equation for the eigenvalues is (1
- X)2 = 0, so we obtain only

one eigenvalue, X=\. This has the eigenvector (1,0). Thus we

know one solution of the general equation

X(o =*<(;)
However, this does not satisfy the given conditions. We cannot

proceed to solve this equation without further study of the matrix,

and that is generally a difficult search. In the present case we can

avoid such difficulties by observing that the second row of (3.54) is

just y' = y, y(0) = 1. This has the solution y(t) = e'. Then the

first row is

x'(t) = x(t) + e' x(0) = 0

and we know how to solve this equation : x(0 = te'. Thus our sought-
after pair is (te1, e').

Notice that in the last example the solutions are not linear combinations

of exponentials, but admit polynomial factors. Only when there is a basis

of eigenvectors are the solutions linear combinations of exponentials ; when

there are too few eigenvectors, we must expect more complicated coeffic

ients. There is a theorem that any solution of a first-order linear system

with constant coefficients is a combination of exponentials with polynomial
factors. This theorem follows from the Jordan canonical form of a matrix;

we shall not go into it here.

We conclude this section with the proof of the global version of Picard's

theorem from which Proposition 6 was obtained.

Proposition 9. (Global Version of Picard's Theorem) Let I be an interval

in R. Suppose F is a continuous R"-valued function defined on I x R" which

satisfies this strong Lipschitz property : there is a constant K>0 such that

for allyuy2eR"

sup{| Fix, yi)
-

F(x, y2) | : x e 1} < K\\7l
-

y2 1| (3.55)

Then the system of n equations

y' = F(x, y) y(c) = a

has a unique solution for any initial condition a at c e I.
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Proof. We cannot simply use the fixed point theorem, for the transformation T

defined by

7T(x) = a + | F(f, fit)) dt

is not a contraction on the space of functions continuous on the interval /. Never

theless the successive approximations procedure works. Define a sequence {f} of

continuous functions on / by induction :

fo(x) = a

d(x) = a + j Fit, f0(f )) dt

f(x)=a+ f F(f,f-i(r))rff

The sequence {f} converges in C(I). By making K larger we may assume that

besides (3.55) we also have ||F(x, a) ||, < K. We prove by induction that

|x)-.-.(x)|^-^-|x-c|"

(i) = 1

I fi(x)
- fo(x)| = fF(f, a) dt < K \ dt = K \x

- c\

(ii) nl=>n

lx)-t-i(x)| = f [F(f, f_i(f))
- F(f, f-2(r))] *

J
c

<Kf\f-i(t)-f-i(t)\dt

(3.56)

From (3.56), we obtain

|f-f-ilU<
[K(b-a)]"

n\
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Since the series 2 [Kib a)f/n ! converges, it follows that {f} is a Cauchy sequence

in C(7) so there is an f e C(/) such that f -> f. Since T is continuous on C(7),

Tf->Tf. But rf = f+i, so f^Tf also, thus Tf = f. Since f is a fixed point of T

we conclude as in Picard's theorem that f solves our problem.

Now the fixed point theorem asserts the uniqueness of our fixed point, and

we seem to have lost that. But we can regain it on /, because locally we have

uniqueness, by Picard's theorem. Suppose g is another solution of the problem; we

have to show that g = f on /. For this purpose we may assume that the point c at

which the initial condition is given is one of the end points of /. Let

R = sup{r / : f (x) = g(x) for all x < r}

Since f (c) = a = g(c), cis in the set on the right. Also, b is an upper bound for this set,

so the least upper bound R exists. We have to show that R=b. If R < b, then

the differential equation is defined in a neighborhood of R. By Picard's theorem,

there is an e > 0 such that the equation y' = F(x, y) has a unique solution in

(R s, R + e) with initial condition y(R) = f (R). But both f and g, when con

sidered as functions on (R s, R + e), are such solutions. (Notice g(7?) = f (R)

by continuity.) Thus, f = g on (7? e, R + e), so R + e is in the set above, and R

is not an upper bound. Thus the assumption R < b is contradicted, so R = b and

the proposition is proved.

EXERCISES

23. Find the general solution of these systems of equations

(a) y'i =4yi 2y2

y2
= 2y2 + 4yi

(b) yi = yi -y2

y2
=

ay i + y2

(c) yi =yi + y2 + yi

y2
=

ayi + y2

y'i = ayi + y3

24. Find the solution of these initial value problems

(a) The system in 23(a) with initial condition yi(0) = 1, y2(0) = 1.

(b) The system in 23(c) with initial conditions Vi(0) =y2(0) =0,

(c) yi =yi + y2 *(0) = 1

y2
=

yi + y2 *2(0) = 1

(d) y'i = 3yi y3 yM = l

y'2 = yi + 2y2 y3 *(0) = 1

y'i = 2yi 2y3 *(0) = -l

25. Find the general solution of the equation x' =Mx, where M is given

by:

(a) the matrix in Example 10.

(b) the matrices in Exercise 10.

(c) the matrices in Exercise 1 1
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(d) / o -1 -3\ (g) / 3 2 0 0^
2 3 3 /-2300
-2 11/ I 0 0 T 2

(e) / 4 7\ (h)

<f)

(J I)
m

PROBLEMS

27. Suppose M = (a/) is an n x n matrix such that a/ =0ifi< j. Show

that the solutions of x' =Mx are all polynomials of degree at most n

(Hint: M" = 0.)

28. Show that exp(M') = (eM)'.
29. Show that if M is skew-symmetric (M' = -M), then eM(eM)' =1.

For such a matrix the rows form an orthonormal basis : A matrix A with the

property AA' = I is thus called orthogonal, and represents a rotation.

3.7 Second-Order Linear Equations

The most comon type of equation arising from physical problems is the

second-order linear equation :

y" + cr1(x)y' + a0(x)y = g(x) (3.57)

Thus the techniques for solving such equations have been well developed.

In this section, we shall assume that we know one solution of the associated

homogeneous equation

y" + ai(x)y' + a0(x)y = 0 (3.58)

and show how to find the general solution of (3.57). The question of finding

this first solution is of course difficult, and further discussion will be postponed

until Chapter 5. The technique involved in finding the general solution

consists in substituting candidates involving the given solution and a new

unknown function, and thereby attempting to reduce the complication in the

given equation.
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In order to motivate this discussion, let us recall the theory of the first-order

equation: y' + h(x)y = g(x). The homogeneous equation is easily solved

by separation of variables : f(x) = exp(Jx h) is a solution of y' hy = 0.

Now, to find the general solution of the given equation we substitute y
= z/

where z is some new unknown function. From/' + hf= 0, we obtain

9
= y' + hy = z'f+ z(f' + hf) = z'f

Thus z =f~1g, so z is found by integration: z = J /"V + c-

Now, the second-order homogeneous equation (3.58) has two independent
solutions. By assumption we know one, call itfx . Let us try to find another

by substituting y
= zfx. The new equation in z is

y" + aiy' + a0y
= z"fx + 2z'f\ + zf'[ + ax(z'fx + zf\) + a0 zfx

= z"/1 + (2/'1+a1/1)z' = 0 (3.59)

This equation is linear in z' and thus we can solve for z' and then integrate to

find z. We have as a result

z(x) = c f f(t)-2 exp (-Q dt

Examples

45. The equation x2y" + xy' y
= 0 has the solution y(x) = x.

We now find another solution by substituting y(x) = z(x)x. We have

y' = z'x + z, y" = z"x+ 2z', so

x2y" + xy' -y = z"x3 + 2z'x2 + z'x2 + xz
-

zx = 0

or

z"x3 + (3z')x2 = 0

Dividing by x2 we have z"x + 3z' = 0, which we can solve for z' by

separation of variables: z = Cxx~2 + C2. We can take z = x~2,
and thus the second solution, y = zx = x"1, is found.

46. sin x2 is a solution of

xy" - y' + 4x3y = 0
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We substitute y
= z sin x2 and obtain this differential equation for z

z"x sin x2 + z'(4x2 cos x2 - sin x2) = 0

Thus

_= -4xcot x2 +-
z' x

Integrating, we obtain

In z' = 2 In csc(x2) + In x + C

or

z' = Cxx esc2 x2

Integrating once again, we find z = Cx cot x2 + C2 . Thus, the

second solution can be chosen as cot x2 sin x2 = cos x2 (which we

might have guessed at the beginning).

Now that we have a technique for finding two independent solutions for

the homogeneous equation, we return to the general equation (3.57). Taking

our cue from the first-order case, we try a combination of the solutions of

the homogeneous equation. Let us refer to these two solutions of (3.58)

as/i,/2 Now, we consider a function of the form

y(x) = zMhix) + z2(x)/2(x) (3-6)

If we compute y' and y" and substitute into (3.57) we will get a totally un

intelligible equation of second order in the two unknown functions z z2 .

What we need, to find two unknown functions,
is of course, a pair of equations.

From where is the second equation to come? We notice, first of all, that

the formula (3.60) does not uniquely determine the functions zt, z2 even 1

we know the sought after function y. For, ifz z2 are found so that (3.60)

gives the solution y, then we may add gf2 to r and subtract gf from z2 ,

obtaining another pair making (3.60) valid. We thus seek another condition

(preferably involving derivatives) which will serve to uniquely identify the

functions zx, z2 . Differentiating (3.60), we obtain

y'ix) = z,(x)/;(x) + z2(x)/2(x) + z\ix)hix) + z2(x)f2(x) (3.61)
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Equations (3.60) and (3.61) will give a pair of linear functions in zx(x) and

z2(x) if the sum z'x(x]fx(x) + z2(x)/2(x) vanishes. This pair of equations

(if noncollinear) will then identify zx(x), z2(x) in terms ofy(x), y'(x). Thus, if

that condition is satisfied we know that zx, z2 are uniquely determined by the

solution y. Turning the argument around, we impose the condition

*'i/i + zi/2=0 (3.62)

and hope now that, together with this condition, the given differential equa

tion will explicitly determine zx,z2. (In fact it will do so theoretically, since

Equation (3.57) determines the solution y which in turn determines zx, z2

in the presence of the condition (3.62).) Let us try our idea on Example 45.

Example

47. Solve x2y" + xy' y
= x2.

We have the two solutions x, x"1 of the homogeneous equation.
We consider y

=

zxx + z2 x"
1
and impose the condition

z'1x + z2x"1=0 (3.63)

Now let us substitute this information into the given equation. In

the presence of (3.63), we have

y' = zx -z2x"2

y'' = z'x z'2x~2 + 2z2x'3

Then

x2 = x2y" + xy' y

= x2z\ z2 + 2z2x_1 + xzx z2x_1 ZjX z2x_1

x2z\ -

z2
= x2 (3.64)

Now the pair of linear Equations (3.63), (3.64) can be solved by

Cramer's rule:

-X 1 X3 -1
,

=

z2
= = x2

-2x 2 -2x 2

Integrating, we find that zx
= x/2 + cx, z2

= x2/6 + c2, and so the

general solution is

y
= zl/l + ^2/2 = \x

- 0-x3 + cxx + c2 X
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Now, it was not an accident that in this case the equations turned out to be

a pair of linear first-order equations: this is always the case. We shall now

describe the technique in general. Supposing \!na\. fx,f2 are two independent

solutions of the homogeneous Equation (3.58) we try a function y
= zxfx

+ z2/2 as solution of (3.57). We impose the condition

zi/i + z'2/2 = 0 (3.65)

Then

y' = Zlf'l + Z2/2

y" = z'J'x + z'2f'2 + zxn + z2f2

Thus (3.57) becomes

z'i/i + Z2/2 + Zl/l + z2/2 + ZlOl/i

+ z2 a 1/2 + ziao /1 + z2o fi = 9

or

z'i/i + z'2fi=g (3-66)

the rest of the terms vanishing since fx,f2 solve (3.57). We solve the pair of

linear Equations (3.65), (3.66) by Cramer's rule.

,
_

-fiQ ,
=

/iff

Zl~/i/2-/2/i
'

/i/'2-/2/i

and these can be integrated in order to find the general solution. One

apparent problem is the denominator. If it ever vanishes, these functions

may not be integrable. In fact, our whole discussion will break down.

Fortunately, we can verify once and for all that this function is nonzero.

The function

W(x) = fx(x)f'2(x)
- f'x(x)f2(x)

= det(g] /?$)

is called the Wronskian of the pair/j , f2 Notice that

W = hf\
- fih
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Since fx,f2 solve (3.57), we can easily check that

W + axW=0

and thus

W(x) = W(x0) exp(- fax(t) dt)

Thus if W is nonzero at one point, it is never zero. W is nonzero at x0 if
the vectors (fx(x0), f{(x0)) and (/2(x0), /2'(x0)) are independent; this is

guaranteed if the functions^ and/2 are independent.

Examples

48. Solve y" + Xy'-y =

x, y(0) = 0, y'(0) = 0. It is easy
to see that x is a solution of the homogeneous equation. We
find another solution by substituting y

= zx. The equation for z
is z"x + (2 + x2)z' = 0. Thus

Z X

so

z' = Cx"2exp(-^
Thus we may take as the second solution

y(x) = xz(x) = x j t~2 exp(
-

-)
*2\

dt

Now let us refer to the integral by cb(x). We solve the given equation
by substituting y

=

zxx + z2x<b(x); this gives the pair of equations

z'xx + z2 X(j)(x) = 0

zi + z'2(x(b'(x) + <p(x)) = 1
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Since </>'(x) = x"2 exp(-x2/2), we find, by Cramer's rule,

-x(p(x)

exp(-x2/2) exp(-x2/2)

or

dtzi{x)=f0-texp{-2-)[sy2exp{-2~)d\
z2(x) = exp(yj

The integrals defining zx are not expressible in closed form, but they
nevertheless define a function. Thus the solution is

y(x) = -x fj exp(- ^) [jV> exp(- l) dx

xexp(y)J"0r2exp(~T)dT

dt

+ .

This technique for solving second-order equations is called variation of

parameters. It can be applied to higher order linear equations. Suppose

we are given such a differential equation :

y(n) + I atix)yll> + y
= g(x) (3.67)

Suppose we have somehow found n independent solutions fx, ...,/ of the

homogeneous equation. Then we try a solution

y
= zi/i + + z fn

As in the second-order case, the solution will uniquely determine the functions

zx, . . .

, z if we impose the conditions

z'i/i +
---

+ z;/; = o

zi/i +
---

+ z;/;' = o

zi/r2) +
--

+ z;/r2)=o
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In the presence of these conditions, (3.67) becomes

zi/S,_1) +
-"

+ z;/i"-1) = 0

We can solve this system as a system of linear equations and then find the

zx, ...,z by integration. Just as in the second-order case, this system is

solvable since the determinant (called the Wronskian of the n functions

fx, ...,/) is never zero.

49. Solve \x3y"' - x2y" + 2xy' - 2y = x5(x2 - 9). (3.68)

The homogeneous equation has the solutions x, x2, x3. Thus we try

y
=

zxx + z2x2 + z3x3. We impose these conditions:

z\x + z'2x2 + z'3x3 = 0

z\ + 2z2 x + 3z'3 x2 = 0

In the presence of these conditions we compute (3.68) to be

z2 + 6z3 = x5(x2 - 9)

The matrix of this system is

tx X2 x3 \
1 2x 3x2

\0 1 6 /

which has the determinant -2x3 + 6x2 = -2x2(x -

3). Thus, by Cramer's

rule, we must have

, x5(x2-9)-x4 , -x5(x2~9)-2x3
" ""

Z2
= '

-2x2(x - 3)
'

-2x2(x-3)

,
_

x5(x2 -

9) x2
23

~

-2x2(x-3)

After integration we can express the general solution as

y(x) =
x9 3x8
zr + ^r + c, +X1 + +c2

3
rx7 x6 I

7+2"H
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EXERCISES

26. Show that the general solution of

y" + y=f

can be expressed as

y(t) = ci cos f + c2 sin f + sin(f - t)/(t) dr
Jo

27. Find the general solution of

y" + y' = x

28. Find the general solution of:

(a) y" -

4y = 1

(b) y'"-y' = x2

(c) y" + 3y' + 2y = sin x

(d) y"-^Lry' + ^y = 0
x 1 x 1

(e) x2y" 4xy' + 6y = x3 + x2

29. Find the solution of

x2y"
-

2y = 2x2 y(0) = 1 y'(0) = 1

30. Find the general solution of

y" + xe'y' -exy=0

31. Find the solution of

e"*y" + xy'-y = l y(0)=0 y'(0) = 1

PROBLEMS

30. A differential equation of the form

akx"yw + ak-i xk-1y('"1) ^ 1- <*ixy' + a0 y
= 0

where the a,'s are constants can be easily solved. Try the substitution

y
= x\ You should obtain

xs[akis)is -l)---(s-k) + ak.iis)is - 1) (s - k + 1) +

h ais + tfo] = 0
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Thus we need only find the k roots of the polynomial in brackets.

Find the general solution of these differential equations:

(a) x2y" 2xy' + y
= 0

(b) x2y"
- 3xy' - 3y = 0

(c) x2y" + 4xy' + 3y = xs

id) x2y"-xy' + y
= 0

31. Solve the second-order 2x2 system of equations

*-+(-! jm; 0'-
iHint: Go to the first-order 4x4 system by adding the equations y' =z.)

3.8 Summary

An Revalued function defined in a neighborhood of x0 in R is called

differentiable at x0 if

lim/(x0
+ 0 -/(x0)

f->0 t

exists. This limit is denoted f'(x0). If / is differentiable on an interval

/ in R its image is a curve in R". The line through /(x0) spanned by /'(x0)
is the tangent line to the curve at /(x0). If h is differentiable in a neighbor

hood of the curve and has a relative maximum on the curve at f(x0), then

<Vn(x0), /'(x0)> = 0. We can deduce the following principle from this. If

h, g are differentiable functions defined in a domain in R", then the maximum

(or minimum) of h subject to the restraint g(x) = 0 is attained at those points
x for which there exists a X such that

g(x) = 0 Vn(x) = XVg(x)

If h, gx, ...,gk are differentiable in R", and h has a maximum (or minimum)

subject to the restraints gx(x) = 0, . . .

, gk(x) = 0 at x0, there exists Xx .
.., Xk

such that

<7,(x0) = 0, . . .
, gk(x0) = 0 V(x0) = X.Vg^Xo) + + XkWgk(x0)

Suppose / is an Revalued function defined on the interval /. / is Ck

(fc-times continuously differentiable) if /', ...,/(t) all exist and are contin-
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uous. If/ is such a function we have Taylor's expansion about any x0 e /:

fix) = /(x0) + 1 i^- (x - x0); + six -

xj
''"'/"W,.. ,., ,(x-x0)

~ '!
' "'

"

x ""'

(fc+1)!

where e(x
-

x0) is bounded by Mk = max{|/(*'(/) I : / between x0 and x}.
If/has derivatives of all orders, and

limM*(x~Xo)* = 0
k->OD k\

then/can be expanded in an infinite Taylor expansion:

to f(')(r )

/(x) = /(x0)+I ^-^(x-xo)"
n=i n!

A differential equation of order k is a relation involving a function of

x, y, y ',..., y(M. If there is a ^-times differentiable function / such that this

relation holds for all x after the substitution y =/(x), y' =/'(x), . . .

, y(, =

/("(x), we say / is a solution of the differential equation. A linear differential

equation of order k is a relation of the form

k- 1

'I
;=i

y(t> + X ai(x)y(0 + a0{x)y = g(x) (3.69)

where the functions a-, and # are (at least) continuous on an interval /. If

jsO, the equation is called homogeneous. The space of solutions of the

homogeneous equation is a vector space of dimension k. Equation (3.69)

has a solution on / uniquely determined by the initial conditions

/(x0) = o /'(*o) = *i,...,/('"n(xo)=flt-i (3-7)

Any equation of the form

y(k) = Fix, y, y' ylk~u)

has a unique solution subject to the initial conditions (3.70) under this

condition on F:

(i) Fis defined and continuous in a neighborhood of (x0, a0, . . .
, ak-x).

(ii) F is Lipschitz: there is an M such that

|F(x,y1,y'1,...,yri>)-F(x,y2,y'2,...,yri,)l

< Mi\)\
-

y2\ + \y\
- y'i\ + + \y\k~u- ^""D
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Techniques for Solution

1 . Successive approximations. The equation

y' = F(x, y), y(x0) = a0

is solvable if F is Lipschitz near x0 . The solution can be approximated by a

sequence {/} defined as follows :

/0 =

any continuous function,

/i(x)= fF(t,f0(t))dt + a0
Jx0

fi(x)= fF(t,fx(t))dt + a0
Jx0

fn(x)=CF(t,fn-x(t))dt + a0

2. Separation of variables. If y' =f(x)g(y), then the equation

\g-1(y)dy = \f(x)dx + C

implicitly determines y as a function of x.

3. First-order linear equations. The homogeneous equation

y'+/y=0

can be solved by separation of variables: y = cexp( |/). The equation

y' +fy =

g can be reduced by the substitution y = z exp( J/). The result

ing equation in z is solved by separation of variables.

4. Constant coefficient linear equations. The characteristic polynomial
of the differential equation

y(t) + ^_1y(fc-1)+--- + a1y' + a0y
= 0 (3.71)

is the polynomial Xk + ak_x X*"1 + + axX + a0 . If r is a root of this

polynomial, then erx is a solution of (3.71).
5. First-order linear systems. Let A be an n x n matrix. The equation

in n unknown functions y = (yx, . . .
, y):
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y' = Ay y(0) = y0

has the solution y(f) = eA'y0. The exponential of a matrix is defined by

eM = exp(M) = / + ?L
n=i n!

If y0 is an eigenvector with eigenvalue X, then the solution is y(f) = ex'y0 .

If R" has a basis yx, . . .

, y of eigenvectors ofM, with eigenvalues Al5 . . .

, Xn
respectively, then the general solution is

cx exp(Xxt)yx + + c exp(Xn t)y

In general, we must allow polynomial coefficients.
6. Second-order linear equations, knowing one solution. Suppose fx is

a solution of

y" + ax(x)y' + a0(x)y = 0 (3.72)

we find a second, by substituting y
= zfx. This produces a linear first-order

equation in z'. Suppose fx,f2 are solutions of (3.72). Then we solve

y" + ax(x)y' + a0(x)y = g(x) (3.73)

by the substitution y
= zxfx + z2f2 . In the presence of the condition

zi/i + z2/2=0 (3.74)

Equation (3.73) becomes

zi/i + 4/2 =

0 (3.75)

The linear Equations (3.74), (3.75) can be solved for zx, z2 and then zx, z2 are

found by integration.

FURTHER READING

E. A. Coddington, An Introduction to Ordinary Differential Equations,

Prentice-Hall, Englewood Cliffs, N.J., 1961. An elementary book on

differential equations which goes more deeply into the material of this

chapter.
M. Tennenbaum and H. Pollard, Ordinary Differential Equations, Harper
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and Row, New York, 1963. This is a thorough treatment of the subject of

differential equations. Many special techniques and applications are

exposed.
F. Brauer and J. A. Nohel, Qualitative theory of Ordinary Differential

Equations, Benjamin, New York, 1967. This book studies the theory of

systems of differential equations, and in particular the behavior of sets of

solutions.

L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading,

Mass., 1968. This is a very modern approach to the subject. It goes

thoroughly into the fundamental theorem.

MISCELLANEOUS PROBLEMS

32. Show that if M is a skew-symmetric matrix (M' = M), then

<Mx, x> = 0 for all x. Show that M2 is symmetric and thus has a basis of

eigenvectors. Conclude that, considered as a matrix over C, M also has a

basis of eigenvectors. iHint : M2 A = (M +V A)(M V A).) Thus if x is

an eigenvector ofM2 with eigenvalue A, then either x is an eigenvector ofM

with eigenvalue V A, or (M V A)x is an eigenvector of M with eigenvalue

-Vx.
33. Let / be any linear transformation. Compute the gradient of

<Tx, Tx>, and show that the maximum of ||7x||2 on |[x||2 = 1 is attained at

an eigenvalue of T'T.

34. Show that if T is a symmetric matrix, 7X{||x||2 = 1}) is an ellipsoid

whose major axes are of length equal to the eigenvalues of T.

35. Find the points p0 e {(x, y) e R2 : xy
= 1}, pi e {(x, y) e R2 : y + x2 = 0}

which minimize the distance between these two curves.

36. Minimize and maximize the volume of a box with given surface area.

37. Find the point on the ellipse [x2 + iy2 = 1} which is closest to (|, 0).

Find the furthest point from (, 0).

38. Find the point on the ellipse {x2 + iy2 = 1} which is closest to the

circle of radius centered at (I, i).

39. Suppose {} is a bounded sequence. Define fix) = 2= i a x".

Show that /is infinitely differentiable in the interval (1, 1), and nla =

fM(0).
40. Let / be a twice continuously differentiable function defined in a

neighborhood N of (0, 0) in R2. Show that there is a function e defined in

N such that lim e(p) = 0 and
P-.0

fix, y) =/(0) + 8 (0, 0)x + 8 (0, 0)y + e(x, y) \\(x, y)\\

41. Using Taylor's theorem, we can derive the exponential function in

yet another way. Suppose that / is a function with the property that
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fix) =/(x) for all x. Then /<"(*) =/(*) for all x, so / must have the
Taylor expansion

* 1 xk+1
f(x)= I ~X"+t(x)

=on! (A:+l)!

for all k. Because of the estimate on ek ,
it remains bounded as k -> oo, so

we should expect /to be the limit of the polynomials Pt(x) = 2'=o (l/!)x".
We already know, from the theory of Chapter 2 that the lim Pkix) exists

for all x. Noticing that Pk = /,_ prove that/(x) = limRedoes indeed
k~"

have the property/' =/.
42. With a little bit of patience, and in the same way as in Exercise 41,

you should be able to find a function / defined on R such that /(0) = l'
/'(0) = 0 and /<"(x) + fix) = 0 for all x.

43. (a) Suppose that /is C on [-R,R] and /(0) =/'(0) = =

/('_I)(0) =0. Then there is a continuous function g such that /(f) =

fgit), and<7(0) = (l//c!)/<(0).

(b) Suppose that/isC on [-R R]. Show that there is acontinuous

function g such that

f(t)=2 r-^t' + tW)
1 = 0 l\

44. Change the conditions in Problem 18 as follows: The ratio of horse

population to total population is constant and only the eggs hatched in

horses produce mature insects. Derive the differential equations now

governing the population growth.

45. Suppose now we have an insect which has a natural death rate of d,

per insect per year and which lays h eggs per insect per year in the air. The

egg hatches if it lands on a horse and the hatching causes the horse's death.

Assuming birth and death rates bH , dH for the horse and a probability k

that a given egg will land on a given horse, now find the differential equations

of population.

46. Suppose f(z) = z represents a force field on the plane. Let a

particle be at 1 at time 0. Describe the motion in case the velocity is i,

(1 + 0/2, (1
- i)/2.

47. We assume that a particle generates a force field directed toward

the particle and of strength equal to the inverse of the square of the distance

to the particle. At time t = 0 there are particles at rest at points pi, . . .

, p*

in R3. Let f,(f ) be the position at time t of the particle originally at p, .

What is the differential equation the function (fi, . . .
, f) must satisfy?

48. Suppose a river deposits water in a lake at the rate of v gal/day. We

may assume that v is a periodic function of time with period 365. Suppose

two pumps pump water out at the constant rates of wt, w2 gal/day. Finally,
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water evaporates out of the lake at a rate of kit ) gal/day/ft2, where k is also

periodic with period 365. We may assume that the area of the lake is

proportional to W213, where Wit ) is the volume of the water in the lake at

day f . Write the differential equation Wmust satisfy.

49. Suppose a missile A is moving in a straight line with constant velocity

v0 . A tracking missile B of constant speed s0 is always pointed toward the

missile A . Find the differential equation ofmotion of the trackingmissileB.

50. Suppose we have the same situation as in Problem 49, but this time

the speed of B is proportional to the distance between A and B. Find the

equation of motion of B.

51. A falling body actually experiences a drag due to air resistance which

is proportional to its velocity. Suppose a body of 100 tons is dropped from

a plane 5 miles high ; and this constant of proportionality (which depends

of course on the shape of the body) is 20. How long will it take for the

body to reach the ground ?

52. Two chemicals A, B in solution combine to create chemical C accord

ing to the equation 2A + B- C. Suppose the rate of the formation of C is

proportional to the product of the amounts ofA and B present and inversely

proportional to the amount of C present. Find the differential equation

governing the formation of C, assuming initial amounts A0 , B0 of chemicals

A,B.

53. Suppose in the above problem, A0 = 10, B0 = 5, and the proportion

constant is 1. How long will it take for the reaction to complete?

54. If two bodies A ,
B of different temperatures come in contact with each

other, the rate of change of temperature is proportional to the difference in

temperature (the proportion constant depends on the bodies). Thus if

TA , TB are the temperatures of A, B, respectively, we have

T'A = kAiTA TB)

T'B = kiTB -

TA)

Find the formula for TA , TB with these data :

(a) kA = 4, kB = 5, 7^(0) = 100, TB(0) = 0.

(b) kA =2,kB = i, TAi0) = 120, r(0) = 50.

55. In Problem 54, as f -> oo the bodies tend to a common temperature.

What is it in case (a), case (b), in general ?

56. Solve these differential equations :

(a) y<4)
-

3y" + 2y = 0.

(b) y" + 3/ + 2y = 2e".

(c) y' sin y + cos x cos y
= cos x.

(d) (x2 + l)y'-2xy = x2 + l.

(e) xy' + 3y = x~2 sin x.

(f ) x' + ax = b sin f.

(g) y" = xey .

(h) y<4> - y<3>
- y(2) - y'

-

2y = 0.
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(i) ay" + by' + cy = 0.

(j) y'(l + x2) = 1 + y\

(k) x' + y' = 2x.

x'-y' = 3y.

M ,-(_? {),.
57. Solve these initial value problems:

(a) y" -

3/ + 2y = e3*, y(0) = 0, y'(0) = 1 .

(b) xy' + 3y = x3, y(0) = 5.

(c) y<4> -

3y<2> + 2y = 0, y(0) = 1
, y'(0) = 0, y"(0) = 0, y '"(0) = 0

(*> r-(] l)y,y(o) = (\).
(e) r-(_93 83)y>y(o) = Q.
(f ) e*yf +Xy'-y = gx; ^Q) = 0> y(()) = Q

(g) x2y" + 3xy' + y
= 0, y(0) = 1

, y'(0) = 1 .

(h) x2y" + 4xy' + 2y = x1
, y(0) = 1, y'(0) = 0.

58. Show that if all the entries of the matrix M are less than 1, then the
series

2M"
n = 0

converges. Show that the limit is (I - M)_1.
59. Use the idea of the preceding problem to approximate A"1 to within

two decimals, where

(a) / 1 0 0.08\

A = (0.07 0.91 0.11

\0.14 -0.03 1.13/

() / 0.98 0.01 -0.12 -0.03
N

-0.13 1.18 0 -0.1

0.02 -0.02 1.01 0

0.11 -0.11 0.13 1

A=i
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